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PROLOGUE

by .
Emanuel Parzen

institute of Statistics
Texas A&M University

This Ph.D, thesis is an important contribution to a new dimension to
statistical reasoning for which | proposez the name FUN STAT (because it is
fun; functional (useful); based on functional analysis; estimates functions;
and graphs functions). FUN.STAT has three important components: quantile
and density-quantile signatures of populations, entropy and information
measures, and functional inference.

The joint density quantile function of (X,Y) where X and Y are jointly

continuous random variables can be represented

in terms of the marginal density-quantile functions fo(u), fQY(u), and the
dependence density d(ul,uz). How these three functions can be semi-
automatically estimated, by autoregressive or exponential model estimators
with maximum entropy properties, is investigated in this thesis. The results
provide important and useful procedures for nonparametric bivariate density
estimation. The thesis discusses estimators of the entropy H(d) of d(u‘,uz),

which seem to me to be important because they can be applied to provide a

“useful quality-index for projection-pursuit data analysis methods.
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1. INTRODUCT!ION

1.1 The Problem

Much of statistical analysis revolves around the
interrelationship between random variables. One may explore cause and
effect relationships, investigate the covariance structure of a
collection of random variables, or attempt to discover the underlying
probability mechanism that produces a vector of random variables. The
areas of regression and correlation analysis, analysis of variance,
categorical data analysis, and the general area of multivariate
analysis attempt to confront some of the relevant problems in dealing
with relationships among random variables. Mathematical tools from
probaﬁility theory and the theory of vector spaces assist in analyzing
the abstract problem, but one must also overcome computational
difficulties that arise from examining discrete observations from a
continuous multivariate distribution. The esoteric nature of
statistical analysis results from the wide range of mathematical and
computational tools that must be empioyed in solving general data
analytic problems. In this work we attempt to consolidate a variety
of such tools to provide a solid base from which to attack the general
problem of multivariate data analysis. We have chosen bivariate data
modeling as the logical starting point, and that is the primary

subject of this thesis; however, multivariate generalizations will be

This dissertation will follow the format for the Journal of the

American Statistical Association.
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suggested whenever appropriate.
In its most genera) form, the problem is to infer from a
bivariate random sample {(xi.vi). i=l,...,n} the nature of the joint

cumulative distribution function (c.d.f.)

FX,Y(X ,Y) = P(X<x,Y<Sy)

and the marginal cumuiative distribution functions

Fx(x) = P(Xsx), FY(y) = P(Y<y) .

Knowledge of these entities will answer most of the gquestions posed in
regression and correlation analysis, but more generally, information
will be provided about the dependence structure between the random
variables X and Y. The theory of parametric inference is based on
assumptions concerning these functions, but one is still faced with
the problem of testing these assumptions. We will emphasize the
problem of determining the dependence structure between two random
variables, but our approach will lead to solutions to more general
probiems of bivariate data analysis.

A specific application will be to provide techniques for testing

the null hypothesis

Ho: X and Y are independent

against some suitable alternative. Many useful techniques already

.
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exist for handling this problem, but often such techniques carry
restrictive assumptions or demand too much computational complexity,.
We will propose a general technique carrying few restrictions that is
computational iy manageablie and that suggests applications to other

areas of bivariate data modeling.
1.2 Survey of the Literature

A wide variety of sources exist from which to extract useful
information for attacking the problem of bivariate data analysis. For
general nonparametric measures of association, Lehmann (13866),
Blomgvist (1950), B8lum, Kiefer, and Rosenblatt (1961), and Hoeffding
(1948) provide usefu! fundamenta) information. Puri, Sen, and Gokhale
{1970) and Parzen (1977) contain useful discussions of independence
tests in a multivariate setting. Classical normal theory is
exemplified in Morrison (1976) with more theoretical results appearing
in Kshirsagar (1972) and Rao (1973).

The approach we employ considers function approximation in a
nonparametric setting using information measures. References on
nonparametric density estimation are provided by Rosenblatt (i956),
Parzen (1962), Cacoullos (1966), Loftsgaarden and Quesenberry (1965),
Kronma) and Tartar (1968), Tartar and Kronmal (1970,1976), Crain
(197L4) , Carmichael (1976), and Good and Gaskins (1980). General
expository and bibliographic sources are provided by Tapia and
Thompson (1978), Bean and Tsokos (1980), Wertz (1978), and Silverman

(1980} . For the mathematical theory of function approximations,

T R P BRIt T D N -




Lanczos (1956), Rainville (1960), Davis (1975), and Powell (1981) are
useful texts. Loeve (1977), Hewitt and Stromberg (1965), and koyden
(1968) contain some results from functional analysis that may also be
applied to this problem in a measure space setting. Parzen
(1959,1961) also contains some useful function space results in a
stafistical setting. Shannon (1948) and Kullback (1978) are the
fundamental references for information theory.

The motivation for much of this research is provided by Parzen
(1977,1979) , Kimeldorf and Sampson (1975b), Crain (1974), and Tartar
and Kronmal (1970). The quantile domain approach to statistical data
modeling found in Parzen (1979b) provides some useful solutions that
can be extended to bivariate data analysis, with Kimeldorf and Sampson
(1975b) providing some useful bivariate theory to apply to the
problem. The orthogonal expansion technique as a method of
nonparametric density estimation seems to be the best suited for
multivariate extension of univariate methods. The ideas of Crain
(1974) and Tartar and Kronmal (1970) motivate the development of a
modification of their techniques based on a general regression
framework using information theoretic notions.

Scott, et al. (1978), employ the bivariate kernel method to a
set of coronary heart disease data, Tartar and Silvers (1975) apply
orthogonal expansion techniques to the problem of bivariate Gaussian
mixture decompositions. These applications suggest a need for a more
objective and less cumbersome approach to the problem of diagnosing
the shape of a bivariate density, which motivates the applications

considered in the present work.
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Finally, Csorgo and Revesz (1€?1), Serfiing (1980), and Randles
and Wolfe (1979) provide comprehensive accounts of the relevant

asymptotic distribution theory for many of the fundamental statistics.
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2. MATHEMATICAL AND STATISTICAL FUNDAMENTALS
2.1 Introduction

The approach to bivariate data modeling that we will develop in
Chapter 4 is motivated by three concepts: 1) the use of quantile
based data analytic tools; 2) the use of information and entropy
criterion functions; and 3) the application of some powerful results
from approximation theory. This chapter provides expository
information on these subjects along with a few remarks and
observations that may not be found in the literature. An additional
section is included describing some elements of stochastic processes
and complex regressijon applicable to the models employed in Chapter 4.
We have assumed knowledge of basic mathematical statistics similar to

that found in Rao (1973).
2.2 Uniform Representations and the Probability Integral Transform
In this section we introduce concepts of probability modeling set

in the quantile domain, i.e., a domain of consideration in which the

guantile function is the fundamental entity. The foundation of much

of the theory will be directliy or indirectly related to the

probability integral transform which makes the quantile approach so

appealing.
Let X be a random variable (r.v.) with c.d.f. F and probability

density function (p.d.f.) f. Define the guantile function Q(u) of X

Ll b bt bt b e
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by

Q(u)=F-2 (u)=inf{x: F(x)=u},0sus1. (2.2.1)

When two or more r.v.'s are considered, one affixes a subscript and

denotes Q (u) as the quantile function of X, etc. This definition of

a quantile function yields a result known as the correspondence

identity, namely

F(x)2u iff Q(u)sx. (2.2.2)

(The expression iff is the commonly used mathematical! abbreviation for

“if and only if".) When F is continuous, one has the inverse identity
FQ(u) = F(Q(w) = u. (2.2.3)

Differentiating the inverse identity, one obtains the reciprocal

identity

fQluig(u) = 1, (2.2.4)

The notation fQ(u) refers to the densjty-quantile function defined to
be the composite function f(Q(u)). One also has the guantile-density

function q(u) defined to be the derivative of the quantiie “unction.

Another useful function is the negative of the derivative of fC ),

often called the score function, given by

e, W i e G ) Wi e By S
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J = ~f'Qu)q(u). (2.2.5)

The score function is usually written

J{u) = ~f'Q(u) /fQ(u). (2.2.6)

Randles and Wolfe (1979b) call J(u) the optimal score function. One

application for J(u) involves the concept of information. Consider a

form of Fisher's information,
1(f) = [Q[%; log f(x)]2 f(x) dx
w|f!(x) 2 - 1 Y
/ T 9 f0|J(u)| du. (2.2.7

Thus, this information measure requires only knowiedge of the score
function. For Shannon entropy, the density-quantile function is the

fundamental object, namely
H(f) = [“[log f(x)If(x) dx

- I;-loo QW) qu. (2.2.8)

With the quintile building blocks considered above, one may now

state two fundamenta! theorems that will be exploited later.

Theorem 2.2.1 Let the r.v. U be distributed uniformly on the

———
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interval [0,1], and let F be a c.d.f. Define the r.v. X by X=Q(U)
where Q is the gquantile function associated with F. Then the c.d.f.

of X is F.
Proof: P (X<x)=P{Q(U)sx] =P[USF (x)]=F (x) .=

Theorem 2.2.2 Let X be a r.v. with continuous c.d.f. F. Then
U=F (X) is a uniform r.v. on the interval [0,1] (in the proof, Q(u) is

the quantile function of X.)

Proof: P (U2u)=P[F (X)2u] =P[x2Q(u)]=P[x>Q(u)]

=1-P[XsQ(u) ]=1-FQ(u)=l~u.a

Details using some of the aforementioned identities are omitted
from the above préofs but may easily be supplied by the reader. The

transformation U=F (X) is called the probability integral transform and

is very useful in attacking general problems in such a way that only
uniform distributions need be considered. The probability integral
transform also reduces the general! simulation problem to one of
simulating uniform [0,1] random variables. One calls U the uniform
representation of X. This terminology will become more meaningful in
the bivariate case. In the univariate case, any continuous random
variable has the same uniform representation. The usefulness occurs
when results are invariant to the probability integral transform.
Moments may be considered in the quantile domain by applying some

of the results obtained above. Observe,

T
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2 .
po=E(X) =€elQ] = fo Q(u) du (2.2.9)
from Theorem 2.2.1, and
b
g2 = var(X) = fo [Q (u) -] 3du. : (2.2.10)

Another application involves transformations of the form Ys=g(X)
where X has a known distribution. A common transformation is the
location-scale transformation

Y =+ gX. (2.2.11)
One is given Qx(u) and wishes to obtain QY(u). Observe,
Fyly)=p (YSy) =P (u+oX<y) =P [Xs (y-u) /o] =F, [(y-u) /d].
FY(y) 2u iff QY(u) Sy
is equivalent to
Fx[(Y'u)/o] 2u iff Qx(u) < (y-p) /o.

Furthermore,

Qx(u) < (y=w/c iff u+on(u) Svy.

-4
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Hence, it follows that
Qy W) = 1+ 9Qy (u) . (2.2.12)

One may seek similar resuits for general transformations Y=g(X). Let

g be a strictly increasing function. Then,
Fy (y)=P[Ysyl=P[g (X) syl=P[Xsg-* (v} J=F,[g-* (¥)].
Again, the correspondence identity for Y is equivaient to
Fulo=t ()] 2 u iff Q (u) < g 2 (y)
and
Q, () s g-*(y) iff glQ, (W] sy.
Thus,
Qy (W) = glQ, (W)]. (2.2.13)
How, suppose g is strictly decreasing. It follows readily that
Fyly) =1V~ F . lg-* (1],

The correspondence identity for Y is equivalent to
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Felg=t(y)]) s 1-u iff Q(1-u) 2 g=*(y)
and
Qx(l-u) 2 g-t{y) iff g[Qx(l-u)J <vy.
Thus,
Q) = glQ, (1-u)]. (2.2.14)

Parzen (1979b) considers the general probliem of transformations of
random variables to specified distributions (such as normal) in light
of the above results.

Some useful extensions to these‘concepts may be applied to
goodness-of-fit (g.o.f.) procedures. |f one defines D (u)=FQ(u) and
d(u)=D' (u}), these represent the c.d.f. and p.d.f. respectively of a
uniform (0,1) random variable. For a null hypothesis

Ho: fQu)=f Q (u), Parzen (19790) calls
1
d(u) = foqo(u)q(u)/fofoqo(u)q(u)du (2.2.15)

the £f.0, transformation density which is a uniform (0,1) density under

the null hypothesis. The statistical applications of (2.2.15) will be
considered in section 3.5 in the discussion of autoregressive density
estimators. Parzen also discusses tai|-exponsnts as a mesns of

classifying distributions based on density-quantile representations.




The reader may consult Parzen (1579b) for more extensive results in
the univariate theory.

Some of the above univariate concepts extend readily to the
bivariate case. Let X and Y be continuous r.v.'s with joint c.d.f.
F and marginals Fx and FY. Let the respective quantile functions

X,Y
be denoted by Qx and QY' Define the dependence distribution function

D(u‘.u by

2)

D(u].uz) - FX’Y(Qx(u]).QY(uz)). 05u].u251. (2.2.16)

Parzen (1977) calls D(u].uz) the regression distribution function,
while Kimeldorf and Sampson (1975b) call it the uniform representation

of FX Y(x.y). The dependence density d(u],uz) is given by
’

th o v (Q(u)), Q (u)))
dluy,uy) = —— Dluj,up) = —FL X D7 X2 a2

Note that while the univarijate representations of the above objects
are related to the uniform (0,1) distribution and hence have
extensions to goodness-of~fit procedures, the depend‘nce distribution
function and the dependence density have the added bivariate role of
detecting independence between two random Qariables. Justifying the
name we have given them. Furthermore, they correspond to bivariate
r.v.'s distributed uniformly on the unit square only when X and Y are
independent, that is, D(u].uz)-u‘u2 and d(u‘.uz)-l if and only if X

and Y are independent. More general bivariate uniform distributions

vt
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are considered by Kimeldorf and Sampson (1975b).

Since the bivariate normal distribution is usually the "null
hypothesis' distribution. one may be interested in the shapes of the
various functions of interest. Figure 1 depicts a bivariate standard
normal p.d.f. with the correlation coefficient equal to 2ero, while
Figure 2 shows the linear concentration of the probability mass when
the correlation coefficient is equal to .9. Figure 3 shows the
dependence density corresponding to Figure 2, while for the
independence case, the dependence density is a flat surface
identically equal to one. Figures 4 and 5 show the bivariate
density-quantile functions corresponding to Figures- | and 2. Ffigures
3 through 5 have not been observed in the l|iterature although they
contribute insight into the relationships between the various
functions of interest.

One may establish an equivalence relation based on the above
uniform representation. Two bivariate distribution functions FX,Y and
GX,Y are said to be equivalent (written FX,Y~GX,Y) if DF-DG where the
subscript refers to the distribution for which the uniform
representation is defined. Thus, all bivariate distribution functions
of independent random variables are equivalent in this sense. The
following Theorem allows one to apply this concept to generating new

distributions with arbitrary prescribed marginals.

Theorem 2.2.3 (Kimeldorf and Sampson, 1975b) Let Fx v’ Gx Y be
» v
bivariate distribution functions with associated marginals Fx. FY' and

H H H -1 -1 -1 -1
Gx. Gv and corresponding quantile functions Fx ’ F& and GX , GY .

]
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|
Then
|
FX’Y~GX’Y iff GX’Y(X.Y)-FX’Y[FX"GX(x).FY"GY(y)]. (2.2.18) !
Example 2.2.1 Let &(.) be the standard normal c.d.f. Then for o ‘
i
satisfying O<p<l,
FXY(my)- o (x) &(y) + [1-0(x)I[1-¢(y)]
{minl(1-0(x)), (1-8(y)) 1P-1} (2.2.19) J
has standard normal marginals. This c.d.f. is derived using the J
bivariate uniform c.d.f
D(ul,uz) = U, + (l-u]) (l-uz) ]
{minl(1-u)), (1-u) 1P -1} (2.2.20) ]
and taking advantage of (2.2.18). Mardia (1970) discusses this c.d.f. ;l
in connection with the bivariate exponential distribution proposed by
Marshall and 0lkin (1967). il

Kimeldorf and Sampson (1975a) discuss one-parameter families of

iy
—

bivariate distributions in light of Theorem 2.2.3. Gy y of (2.2.18)

is called a (QX.QY)-translage of Fx v’ Ideally, one-parameter [!
families of bivariate distributions exhibit a parameter that provides

. T PRS- T «
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some measure of association between the random variabies. Such is the
case for the one-parameter family of bivariate standard normal
distributions (i.e.,ux -uy-o,ox -oy-l). Kimeldorf and Sampson base
their discussion on uniform representations of bivariate
distributions.

The uniform density d(u‘,uz) defined by (2.2.17) also has
applications to regression problems. Using the definition of E(Y|X),

one "lay L ite the equivale“t expl essiOll
1

by using the change of variable X-QX(U‘) and Y-QY(UZ) where U] and U2
are (possibly dependent) uniform (0,1) random variables. Equation
(2.2.21) justifies Parzen's use of the term regression density for
d(u],uz). Furthermore, this representation suggests applications to
nonparametric regression which will be considered in Chapter 4.

One may also consider genefal quantile representations of
conditional probability functions. Corresponding to the conditional

c.d.f. (y|x) is a conditional quantile function Qle(ulx) defined

F\rlx
by (2.2.1). Parzen (1977} uses the usual change of variable to obtain

Ug i t
FYIX(le) - [0 d(Fx(x).uz) du, (2.2.22)

where u_=f_ (y). He then expresses (u|x) in terms of the

2 Y Y|x
unconditional quantile function Qx(-) evaluated at an inverse

representation of the right hand side of (2.2.22). One would prefer a
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simpler expression conducive to estimation from sample data, but
Parzen suggests estimators for QY[X whose properties remain to be
investigated. The value of the conditional gquantile function is
illustrated in the following application.

To generate a univariate random sample of size n with specified

c.d.f. F, one generates a uniform random sample U].....Un and forms
Xi = Q(Ui)' i=l,...,N, (2.2.23)
where Q is the guantiie function corresponding to F. Theorem 2.2.1 t

guarantees that the sample has common c.d.f. F. The extension of this

approach to the bivariate case, however, is not obvious. The usual

4
approach is to generate collections of random variables VI.VZ.....Vk

1
and form ;

=g (V. ,V_,...,V ), Y=sh(V ,V_,..., .2.24
X=g V..V, Jr YL, v,) (2.2.24)

so that the appropriate distribution theory guarantees that X and Y

Fx Y’ This entails generating kn random

variables to obtain 2n random variables. Furthermore, the V values

have specified joint c.d.f.

!
usually are transformed uniform values based on (2.2.23) so that the _]
simulation problem becomes unrclsonabiy complicated. In some cases, !
the appropriate distribution theory does not exist to generate the

desired random sample. To overcome this problem, one may develop a .]

general procedure based on the conditional quantile function.

Let U‘ and U2 be independent uniform (0,1) random variables.
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Specify joint c.d.f. Fx v and form
x-QX(U]). Y-Qle(UZIX) (2.2.25)

where the quantile functions correspond to the choice of ¢.d.f. FX,Y'
Then X and Y have specified joint c.d.f. FX,Y' To generate a sample
of size n, one merely generates two independent samples of uniform
random variables and uses (2.2.25) to form the corresponding bivariate
sample with c.d.f. FX,Y' Kennedy and Gentle (1980) consider a variety
of techniques for generating uniform (0,1) random variabies and
discuss the design of Monte Carlo experiments. Such technigues will
be applied in Chapter 4.

One attempts to estimate the above quantities with statistics
that possess desirable properties. An important sample object useful

in developing statistics of interest is the empirical distribution

function (e.d.f.) Fn(x) defined by

Fn(x) = (1/n) {no. of data points s x}. (2.2.26)

Formally, one assumes a collection x].xz,...,xn of i.i.d. r.v.'s,

i.e., a random sampie of size n, and defines the empirical c.d.f.

Fn(x) by

n
Folx) = (1/n) § 1, (x)) (2.2.27)

i=}

where A= {-o,x] and

AR il e L s ke L
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IA(t) = (2.2.28)
0 if teA,

is the indicator function. One observes immediately that Fn(x)
satisfies the properties of a c.d.f., i.e., nondecreasing, continuous
from the right, OSFn(x)SI, Fn(-w)-o. and Fn@n)-l. Furthermore, Fn(x)
may be thought of as a stochastic process although presently attention
is paid to Fn(x) for fixed x.

We now briefly state some important properties of Fn(x). Let

F(x) be the true population c.d.f. generating the data. Then
E[Fn(x)] = F(x), Var[Fn(x)] = F(x) [1~F(x)]/n. (2.2.29)

Thus, Fn(x)¢F(x) as n# in quadratic mean, or Fn(x) is consistent in
mean square for estimating F(x).

The representation (2.2.27) also permits direct application of
the Strong Law of Large Numbers (SLLN) and the Central Limit Tﬁeorem
(CLT). One notes that nFn(x) is exactly binomially distributed with
parameters (n.F(x));  which makes it easy to deduce that Fn(x) is
strongly consistonirfor estimating F(x) and that Fn(x) suitably
standardized is asymptotically normally distributed. Note that these
results pertain to the pointwise estimation of F(x) by Fo(x). Giobal
measures characterizing the 'closeness’ of F_ in approximating F may
be found in Durbin (1973) with important asymptotic results stated

therein.

The Lebesgue-Stieltjes integral w.r.t. the empirical c.d.f. is

= T | O == e e

oy
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often employed to obtain method of moments estimates for the
corresponding population parameter. Ffor example, for the parameter
def ined by

o0
p o= [ x dfF(x), (2.2.30)

=00

the corresponding meth-d of moments estimator in may be represented by
Xo= [T x dF_(x). (2.2.31)
=00

This approach to obtaining estimators has many applications. Some of

the information parameters of the next section will be estimated using

this approach.

An empirical function fundamental to the quantile approach is the

empirical guantile function given by

Qn(u) = F&‘(u) = inf{x: Fn(x)ZU} {2.2.32)
Upon closer inspection one realizes that (2.2.32) is equivalent to

Qn(u) - X(j) for (j-1)/n<usj/n, j=1,...,n, (2.2.33)

where X(j) is the j-th order statistic of the random sampie. Parzen
(19739b) suggests that Qn(o) be taken to be a natural minimum when one

is available. If Q(u) is the true population quantile function, one

may define the sample guantile process by
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A (u) = /;[Qn(u)-Q(u)3. Osus). (2.2.34)
The following results may be found in Csdrgd and Révész (1981).

Theorem 2.2.4 Let u, O<usl, be given. Let F(x) be absolutely
continuous in an interval about Q(u), and let fQ(u) be positive and

continuoug at u. Then as n+o,

d
fQ(u)An(u)/Vu(l-u’ + N{(O,1). (2.2.35)

Theorem 2.2.5 Let Q(u) be continuous at u. Then as n-w,

QW a3 Q). (2.2.36)

Further results are given in Csorgo and Revesz (1981). Serfling
(1980) also provides similar results for the sample quantile function.
More general results treat An(u) as a stochastic process and exhibit
the left hand side of (2.2.35) as converging in distribution to a
Brownian Bridge stochastic process. The definition of a Brownian
Bridge is given in Section 2.5, but for now, one notas that the

results of Theorem 2.2.4 may be generaiized to conclude

d |
fQA (W) + B, for all u, (2.2.37)
'l
]
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where B(u) is a Brownian Bridge process.
One may prefer to use the piecewise linear definition of the
sample quantile function given by

Q (w = nE(j/n)-u]X( + afu-(j-1) /n]x

j=1 (j)’

(j=1)/nsusj/n,j=1,...,n, (2.2.38)

or the shifted piecewise |inear version

Q (u) = nl(j+.5)/n-ulX + nlu~(j-.5) /nlx

(j) (j+1)’

(j-.5) /nsus(j+.5) /n,j=1,...,n. (2.2.39)

Using definition (2.2.39) suggests that the empirical quantile-density

be defined by

qn(u) = n(x(j+])-x(j)). (j=.5) /n<u< (j+.5)/n, j=1,...,n-1. (2.2.40)

This definition of qn(u) is the derivative of (2.2.39). For any
definition of Qn(u). one may take the corresponding qn(u) to be the

raw derivative

(W) = [Q, (u+h)-Q (u-h) 1/ (2n), O<u<l, (2.2.41)

where heh(n) is some predetermined positive function of n. Bioch and

e owgS L,
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Gastwirth (1968) use (2.2.41) corresponding to @ (u) defined by
{2.2.33). Vvasicek (1976) applies this definition to obtain the g.o.f.
test of normality discussed previously. Observe that for any well
defined qn(u), an(u)-l/qn(u) is an estimate of the density-quantile
function by virtue of the reciprocal identity. The g.o.f. statistic
of Vasicek uses this fact to define the sample entropy discussed in
the next section.

A problem with the qn(u) estimates above is that they are not
necessarily consistent estimators of q(u). Hence, one usually seeks
""'smoothed' or corrected versions that yield nice asymptotic results.
One notes that often q{u) is not a function of interest except as it
is applied using the reciprocal identity. Thus, technigues for
estimating q(u) are employed and if estimates of fQ{(u) are desired,
one then applies the reciprocal identity. The estimation of fQ(u)
will be considered in Chapter 3.

The bivariate functions of interest are F_ _(x,y), fX,Y(x'Y)'

X,y
D(u',uz). d(u],uz). and Q (y|x). Raw estimates of F (x,y) and
Y|X

D(u].uz) may be obtained analogously to the empirical ;.d.f., i.e.,
defined with jumps of size 1/n at the points (X,,Y;) and
(Qi/(n+l).Ri/(n+l)) respectively, where Qi-rank(xi) and Ri-rank(Yi).
improved versions of these estimators will be considered in Chapters 3
and 4., Parzen (1977) suggests techniques for astimating Qle(ylx)
based on raw estimates of D(u].uz). This subject will be discussed
further in Chapter 4 in relation to several techniques of bivariate

dengity estimation. The asymptotic results for the bivariate case,

however, remain to be investigated.
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2.3 Information and Entropy

The concept of statistical information or information numbers has
many useful applications in statistical analysis (Kullback, 1978, Rao,
1973) . Fisher's information has been studied extensively and is of
primary importance in uniform minimum variance estimation and maximum
likelihood estimation. We will consider an alternative measure of
information proposed by Shannon (1948) and studied in a statistical
setting by Kullback (1978). The following definitions pertain to a

measure of information and related concepts.

Definition 2.3.1 The information | (f;g) between two densities

f(x) and g(x) is given by
1(Fsg) = [ Q1oglf (x) /g () 1}E (1) dx. (2.3.1)

Definition 2.3.2 The entropy of a density f(x) is given by

H(f) = fw{-log f(x)}f(x) dx. (2.3.2)

-0

Definition 2.3.3 The cross-entropy between two densities f(x) and

g(x) is given by

H(fig) = | {-log g(x)}f(x) dx. (2.3.3)

One immediately notes that H(f)=H(f;f) and that

i —d
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L (f;g) = H(f;9) - H(f). (2.3.4)
Kullback (1978) proves the following fundamental thec-em.
Theorem 2.3.1 Let f(x) and g(x) be probability densities. Then
1(f;g) 2 0 a.e. (2.3.5)

Equation (2.3.5) is called the information inequality. We will
exploit this inequality in constructing tests for independence between
two random variables.

Generaliy, information is considered as a ''distance' between two
densities, although it is not a metric since it does not satisfy the
triangle inequality. |f one wishes a symmetric measure of
information, one such definition is provided by

J(f;g) = 1(f;9) + 1(g:f). (2.3.6)
Observe,

J(fig) = [w [f(x)-g(x)] togl*(x)/g(x)] dx. (2.3.7)

Kullback calls J(f;g) the divergence between f and g.

One may also note that

1(fig) = E.[log f(X)] - E.[iog g(X)] (2.3.8)

ey ' .
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and that

H{f) = Ef[-log f(X)]. (2.3.9)

These expectations need not be finite.

More general measures of information may also be developed.
Parzen (1982) discusses several general information measures, in

particular the bi-information given by

F(Fig) = [ |1ogDf (x) /g (x)]|2f (x) dx. (2.3.10)

-0

We will exploit this definition as an estimation criterion in Chapter
L.

Our main application of information as a statistical measure will
be to the probiem of ascertaining whether twc random variabies X and Y
are associated. For joint p.d.f. fX,Y and marginals fx. fY' one

obtains (see section L4.5)

1( ) = -H(d) (2.3.11)

fx, v Fxfy
where d is the dependence density for X and Y. One may then exploit
(2.3.11) as a measure of dependence or association. Linfoot (1957) was
one of the first authors to consider information as a measure of
association between X and Y. Of primary importance, however, is the
fact that X and Y are independent if and only if |(fx,Y;foY)'° by

virtue of the information inequality of Theorem 2.3.1.
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One may desire to emphasize the modeling of probability laws of
random variables by using the alternate notation
LR = 1 (Fysfy ) - (2.3.12)
Using such notation it is easy to show that
LY[X) = H(Y) - H(Y|X) (2.3.13)
where
H(Y|X) = H(fYIX). (2.3.104)

These results are readily applicable to regression and prediction
problems.

Information thus has a dual role in statistics being a parameter
of interest or a criterion function depending upon the setting for the
problem of interest. We will apply information criterion functions to
the probiem of density estimation in section 4.k, The use of
information as a dependence parameter will be investigated in section
4.5. Generally, information serves as a useful goodness-of-fit
criterion also. Consider the general Neyman-Pearson theory of
hypothesis testing. Recall, one rejects HO: f(x)-fo(x) in favor of
H,: f(x)-f‘(x) for spccified aif

i

n n :
iEl fl(xi) 2 kiILfo(Xi). (2.3.15)

8 [ove -0l et B cnertu B ccormes SN s
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where k is chosen to satisfy

n X
PLC T F (X)I/L TF_(X)I2k[H } = 2.

i=1 i=1

Taking logarithms of (2.3.15) and simplifying, one obtains the

equivalent expression

n n
(1/n) 2 log fl(xi) - (1/n) z log fo(Xi) 2k, (2.

i=l i=l

which can be written

33

.16)

A7

HF (fl) - HF (fo) 2k, (2.3.18)
n n

where

HFn(f) - L, -log f(x) dF (x). (2.3.19)
Another expression equivalent to (2.3.15) is

'Fn(fl’fo) 2k (2.3.20)

where
le (f38) = [ oglf (x)/g(x)] dF (x). (2.3.21)

n

Vasicek (1976) deveiops an entropy based test of normality with
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¢ritical region defined by
Hn(fAQn) S H, (m,n) (2.3.22)
where Hn(gbn) given by

~ n
H(an) = (1/n) § 1og{(n/2m) (x(im)-x(i_m))}. (2.3.23)
i=]
with x(i)-x(]) for i<l and x(i)-x(n) for i>n, is the sample entropy
of a nearest neighbor estimate of the density-quantile function and
Ha(m,n) is the corresponding critical value for significance level a.

Dudewicz and Van Der Meulen (1981) investigate power properties of

this procedure and conclude in simulation studies that the test is

compet tive with existing g.o.f. procedures. Vasicek shows that the
sample entropy is consistent for estimating H(f). A similar procedure
for the bivariate case will be considered in Chapter 4.

Since the bivariate normal is of special interest, we note that
the information between the joint p.d.f. and the product of the

marginals for this special case is given by
. - - -pnl
l(fx’y.fva) .5 log(1-p2) (2.3.24)

so that the information in this case is a function only of the
correlation coefficient p.
The parametric approach to statistical inference using

information theory, with emphasis on classical normal theory, has been

[N
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' studied extensively in the literature with Kuliback (1978) providing a
fundamental reference. Only recently has information theory been

applied to nonparametric problems and exploratory data analysis. This

work attempts to contribute to the application of information theory !

to such statistical probiems.

2.4 Some Fundamental Concepts from Approximation Theory

Approximation theory has as its primary goal the approximation of

a function (or a graph or a curve). Several examples may illuminate

the need for such an approximation.

Example 2.4.1 The error function defined by
X
erf(x) = (2/W) [ exp(-y?) dy (2.4.1)

cannot be obtained explicitly for specified x since the integral on

the right hand side of (2.4.1) cannot be simplified. Hence, one seeks
to approximate erf (x) by approximating the integral for given x. One
solution is to employ numerical integration techniques to approximate

erf(x). Statisticians are interested in this problem because the

d(x) = .5+ .5 erf(x//2)., x>0. (2.4.2)

T V)

' standard normal c.d.f. ¢(x) may be expressed by
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Example 2.4.2 Let y(x,t) represent the displacement of a tightly
stretched string at time t vibrating in the xy-plane. The analysis of

the problem of the vibrating string yields the differential equation

2 2
) y(:,t) = K2 2 y(x,t) (2.7.3)
at ax?

also called the wave eguation. A simple (closed form, finite)
exprassion for y(x,t) has not been obtained for specific boundary
conditions. One solution is to express y(x,t) as an infinite Fourier

series and truncate at a suitable order (see, e.g., Churchill, 1969).

These two examples depict a situation where an exact numerical
value cannot be obtained for a function at a specified point because
no 'simple’ expression for the function has been discovered.
Abramowit2z and Stegun (1972) provide a useful reference for such
probiems, especially when one saeks to obtain approximations with
specified bounds on precision.

The following two examples depict settings in which approximation

theory and statistical estimation theory seem to become entwined.

Example 2.4.3 Given a set of bivariate data (x‘,v‘).....(xn.vﬁ).

the relationship
Yi = '(xi'g) + €l (2.4.,4)

is known to hold where r(-,:) is a specified function of X and

' .
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parametersg-(el,....ek) and {Ei} are i.i.d, r.v.'s with known
distribution. The function r(xd@) is known except for the
parameters. One seeks to approximate r by estimating the parameters

based on the sample data.

Example 2.4.4 A set of data is generated by a probability
mechanism with probability density function f. If f is unknown, one
seeks to approximate f based on the observations in the sample data.

Chapter 3 presents several solutions to this problem.

Example 2.4.3 illustrates how approximation theory and
statistical estimation theory compliment each other. However, Exampie
2.4L.L4 seems to be an exercise in statistical estimation alone. One
may find it difficult to distinguish between the terms 'approximation"
and "estimation". In this work, approximation theory will refer to
the concepts and theorems empioyed to approximate a function with
known mathematical properties. The approximation may be obtained by
rigorous mathematical arguments or by working with criterion functions :
and sample data. Estimation theory, on the other hand, must always .
resort to sample data and hence has a stochastic eliement not essential
to approximation theory. In the context of Example 2.L.Lk, estimation
theory would treat f(x) as a 'parameter” while approximation theory
would treat it as a function with specified properties. Any ambiguity
in the use of these terms should pose no serious obstacles in applying
them to problems of interest,

To approximate a function one usually must restrict f to belong
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to a certain class of functions. Theory is then developed to
approximate functions in a given class. More generally, one may
consider a space of functions whose members possess certain
properties. The simplest class of functions might be the space of
constant functions, while one of the more complex classes might
consist of measurable functions. To begin the study of appreximating
elements in a space of functions, seversi concepts will be introduced

that will be useful in defining function spaces.

Definition 2.4.1 4 metric space (M,d) is a nonempty set M of

elements together with a real-valued function d:MxM+R called a metric

that satisfies the following properties for all x,y,2eM:

i) d(x,y)20;
ii) dix,y)=0 iff xmy;
iii) di(x,y)=d(y,x} - and

iv) dix,y)sd(x,z)+d(z,y).

The function d is also called a distance, and property (iv) above is
called the triangle ineguality becauss of its application to Euclidean

2-space with the metric d(x,y)=|x-y|.

Definition 2.4.2 A vector scace (or linsar space) over the reals

is & set of elements (called vectors) V together with two operations
(functions) +:VxV-¥ and e:RxV*/ which satisfy the following properties

tor all x,y,zcV and X, ueh:

t“. ——y
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i) x+ysy+x;
1) (x+y)+z=x+(y+2) ;
jii) there exists BecV such that x+8=x for all xeV;
iv) Alx+y)= x+Ay;
v} (A+p) x=Ax+ux;
vi) Adux)=(Au)x; and

vii) Oex= , lex=x,

The set of real numbers in this setting is also called a set of
scalars, hence in general one speaks of a vector space and a set of

scalars.

Definition 2.4.3 A real-valued function ||:|[:V-R defined on a
vector space V is called a norm if the vollowing properties are

satisfied for all x,yeV and AeR:

) [1x20;

ii) |ix|=0 iff x=8;
ii1) fpevlis il +fivlls and
i) (= x =

A vector space that possesses such a norm is called appropriately

enough 3 normed vector space.

One immediately notes that d(x,y)=||x-y|| defines a metric and

hence a normed vector space is also a metric space. The concept of a

TRRPRIRONE =X PN A S R oo o SR CEPR

PRESTRSEE 3




Lo

distance measure or metric gives one a firm grasp on many abstract

concepts.

Definition 2.4.h Let {x;} be a sequence of veciars in a normed

vector space V with norm |[-||. The sequence {xn} is called a Cauchy
sequence if for given €>0, there exists an N such that for all n2N and

mZN,I[xn-4J|<€.

Definition 2.4.5 A normed vector space V is said to be compiete

if all Cauchy sequences converge, i.e., if {xn} is a Cauchy sequence,

then there exists xeV such that lim X, =X A compiete normed vector
n-o

space is called a Banach space.

Definition 2.4.6 A set H is called an inner product space if it
is a vector space and if there exists g real-valued function

(, ):HxH R called an jnner product that satisfies the following

properties for all x,y,2 H and all AeR:

i) (Ax,y)=xx,y);
ii) (x+y,z)=(x,2)+(y,2);
iti) (x,y)=(y,x); and

iv) (x,x)>0 if xn0,

One may permit the inner product io be complex valued, i.e.,

(+y +) :HXHC, in which case property (iii) above becomes

P e TR - oy
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iii) (x,y)={y,x)

where 2 is the complex conjugate of z. Note that ||x|?=(x,x) defines a

norm so that an inner product space is also a normed vector space.

Definition 2.4.7 A complete inner product space is called a

Hilbert space. (Some authors, e.g., Davis, 1975, give a more

restrictive definition of a Hilbert space, but this definition seems
fairly standard in the literature. See, e.g., Lod&ve, 1977, Royden,

1968, or Hewitt and Stromberg, 1965.)

When one moves down the hierarchy of spaces defined above, the
transition from inner product to norm to metric will be understood to

follow the convention given unless otherwise noted. The hierarchy is

emphasized as follows:

Hilbert space - Banach space » normed vector space .. metric space.

While restricting functions to beiong to a Hilbert space may seem
severe, one will soon discover that many functions of statistical
importance fit nicely into a special class of Hilbert spaces called

the Lp spaces.

Theorem 2.4.]1 Let H be a Hilbert space with inner product (-,).

Then for any x,yeH,

ol s
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oy < x| vl (2.4.5)
The inequality (2.4.5) is known as the Cauchy-Schwarz inequality.

Example 2.4.5 For two random variables X and Y possessing finite
second moments, Cov(X,Y) is an inner product. Thus, /Var (x) =/Cov (X, X)

is a3 norm, and hence

Cov(X,Y) < /Var (X) Var(Y). (2.4.6)

This is the common statistical version of the Cauchy-Schwarz

inequality.

Definition 2.4.8 Let H be a Hilbert space with inner product
{-,*) and let x,ycH. One says that x and y are orthogonal if
(x,y)=0. A set SeH is called an orthogonal system if for all distinct

elements x,yeS, (x,y)=0. Furthermore, if x =1 for all x€S, S is

called an orthonormal system.

Remark 2.4.1 If H is separable (see, e.g., Royden, 1968) , then
every orthonormal system in H must be countable. This work will need
only consider separable Hilbert spaces. Theorem 2.4.3 below will

illustrate why.

Qefipition 2.h.9 Let H be a senarable Hilbert space and let

{6} ) be an orthonormal system in . The Fourier coefficients
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w.r.t. {¢k} of an element xtH are defined by

B, = (x,9). (2.4.7)

Theorem 2.4.2 Let H be a separable Hilbert space and {¢k}:=l be

the Fourier coefficients w.r.t. {¢k}:-l of an element xtH. Then

I o2 s x| (2.4.8)
]

k=

This is known as Bessel's inequality.

Deinition 2.4.10 Let H be a2 separable Hilbert space and let

{6} =) be an orthonormal system in H. If (x,%)=0 for all k implies

that x=9 (here 9 is the identity element), then {¢k}:=| is said to

be a complete orthonormal system.

The justification for the term ''complete' becomes evident in the
following theorem. Royden (1968, p. 212) also gives motivation for

this usage.

Theorem 2.4.3 Let H be a separable Hilbert space. Then every
orthonormal system in H is countable and there exists a complete

orthonormal system. |f {ék}:gl is any complete orthonormal system in

H and xeH, then




Ly
x =704 (2.4.9)
ka1 kTk

where Skt(x.¢k). Equation (2.4.9) is said to be the Fourier series

m
representation of x and specifically means lim”x- Z ek¢k“-0.
m-w k=1

Remark 2.4.2 Every complete orthonormal system in a separable
Hilbert space has the same number of elements. This number is called

the dimension of H.

Remark 2.4.3 If the dimension of H is finite, then H is a finite
dimensional vector space and any complete orthonormal system in H is a
basis for H. One may also consider countably infinite basis sets if
desired, in which case any complete orthonormal system in H is a basis

for H. The Gramm-Schmidt orthonormalization process (see, e.g.,

Hewitt and Stromberg, 1965, pp. 240-~242) permits construction of an

orthonormal system given any basis set for a vector space.

Remark 2.4.4 In the context of Theorem 2.4.3, it follows that for

xeH,

([ -k:fl 0:. (2.4.10)

This is known as Parseval's iden.ity.

Theorem 2.4.3 provides the foundation for many useful expansion

techniques used to approximate a function of interest. One need only
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decide upon an appropriate orthonormal system in a Hilbert space of
functions to construct an approximation based upon equation (2.4.9).
First, however, an appropriate Hilbert space must be identified that
contains functions of interest.
Definition 2.4.11 A (Lebesgue) measurable function f is said to
belong to the space P (a,b) if
b 1/p
p
TR I @
a

for 1sp< .
If one defines an inner product between two functions f and g by

b
{f,g) = f f(x) glx) dx, (2.4.12)

a

where g(x] is the complex conjugate of g(x), then the corresponding

norm is given by

pei={ e e} @13

It can be shown that L2(a,b) is a separable Hilbert space, and hence
Theorem 2.4.3 applies for functions in L% (a,b). Let {¢k(x)}:=] be a

complete orthonormal system in L?(a,b). Then for fel? (a,b), equation

(2.4.9) becomes

ey

-
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f(x) = J 860 (2.4.10)
k=1
where
b
8, = (F.9) = [ f(x) 9 (x) ax (2.4.15)
a

are the Fourier coefficients w.r.t. {¢k(x)}.
Now, suppose one wishes to approximate a function feL3 (a,b) by a
suitable finite expression. One solution is to chose the truncated

Fourier series representation
m
fo) =186 (. (2.4.16)
k=1
Indeed, this approximation for f has some nice properties.

Theorem 2.h.4 Let H be a separable Hilbert space and let {¢k}:=l

be a complete orthonormal system in H. Then for any xeH,
5 m
Ix= L teaoy lisllx- L ool (2.417)

for any choice of constants 8.,...,8 .

1’ m

Observe that Theorem 2.k.hk implies that the best approximator w.r.t.
the least squares criterion for an element in a separable Hilbert
space is provided by the iruncated Fourier series reprasentation.

If one seeks a geometric interpretation of least squares

[
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' approximation, some fundamental definitions and notation are required.
Since a separable Hilbert space is also a vector space, one may employ
#n analugy to vectors in Euclidean space and define for any two

eiements x,y in a Hilbert space H the projection of x on y by
' proj (x.y) = [(x.y)}/(y,y)ly. (2.4.18)

Using this interpretation, one sees that an eiement of a separable

Hilbert space may be expressed as the sum of the projections of the

element on the elements of an orthonormal system. Ffurthermore, one

- T—

| observes that the orthonormal system {¢k}:;l defines a subspace of
the separable Hilbert space H. In this sense, the truncated Fourier
series representation for an element x in H is essentially the
projection of x into an m-dimensional subspace of H. For a clearer
exposition on the geometric interpretation of least squares
estimation, see Chapter 8 of Davis (1975).
Many of the results stated above also hoid if {¢k}:;l is merely
a system of orthogonal elements, except that terms involving “¢k” may
have been omitted. (Recall, in the setting considered ||, [=1.) These .

results are used extensively in the statistical literature, most o

notably in the study of linear models. However, in many statistical
settings, finite-dimensional vector space theory is sufficient to
handle most problems of interest. ‘

Many fundamental analysis texts discuss orthonormal systems for

the space L2?(a,b) as well as for other spaces of functions. The most

popular systems include Jacobi polynomials, trigonometric systems, and

ey eamgs CGED @ GHP SEV GEP e WIS M canme.
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complex exponentiais. Lanczos (1956), Rainville (1960), Davis (1975),
and Powell (1981) are some basic references on approximation theory
that identify various useful orthonormal systems.

For a discussion of some basic integration theorems and other
results for Lp spaces, one may consult basic texts such as Royden
(1968) or Hewitt and Stromberg (1965).

Most of the discussion thus far has emphasized oniy
approximations by orthogona! expansion. Some results found in Bochner
(1955) are valuable for other types of approximation. Parzen (1962)
contains some useful essentials of approximation theory relevant to
kerne! density estimation based on some of the elements of

approximation theory discussed by Bochner.
Theorem 2.4.5 et K(x) be a Borel measurable function satisfying
i) sup [K(x) | <3
o
i) [ |K(x)| dx <=; and
-00

iii) lim |x K(x)| = 0.

X
Let f(x) satisfy

iv) jlﬂﬂ|dx<a.

-0

Let {h(n)} be a sequence of positive constants satisfying

.
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v) h(n)~0 as m,

Define approximating functions fn(x) by

kg

folx) = fcfl/h(n)]K[Y/h(n)]f(x-y) dy. (2.4.19)

Then at every continuity point x of f,

q.m. .
fn(x) —~f(x) [ K(y) dy as nim. (2.4.20)

-~

Resuit (2.4.20) illustrates why one usually makes the additional
restriction that K(x) integrates to one. One calls K a kernel
function, and specific suggestions for K may be found in Bochner
(1955) or Parzen (1962).

Parzen considers analogous results for the Fourier transforms

k() = [“exp(-iux)K(x) dx (2.4.21)

and
ou) = fwexp(iux)f(x) dx, (2.4.22)

and extends these resuits to the solution of problems of density
estimation. Some of these results will be mentioned in section 3.3.
Other results in approximation theory are applicable to

statistics. As suggested, a reference such as Abramowitz and Stegun
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(1972) is very handy for computer implementation of approximation
theory results, and most such references require little mathematical
expertise. We have avoided discussion of spliine approximation
techniques as we will continue to do throughout this work, but useful
references such as Ahlberg, Nilson, and Walsh (1967) and Wahba (1971)

adequately discuss the topic.
2.5 Some Fundamental Stochastic Processes and Complex Regression
The standard linear regression model is usually written

P
Y, =Bo+ LB X, *E . inlin, (2.5.1)
k=)
where observations on the vector ﬁf(x‘.....xp) are assumed to be
measured without error and the Ei are uncorrelated random variables
with common mean 2ero and common positive finite variance o?. |In

matrix notation, one writes

Y=Xg+ e, (2.5.2)
or one may express (2.5.1) by
p
E(Y]|Xux) = + )8 x ,
I Bo*+ I X
k=]
Var (Y|X=x) = g3, (2.5.3)

car oy i — ——
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The well known Gauss-Markov Theorem (see, e.g., Graybill, 1978) states
that under these equivalent mode! specifications, the least squares

estimate of g, namely
g o= (X'X)-iX'y, (2.5.4)

is the uniform minimum variance linear unbiased estimator (BLUE) of .
Note that for conditions (2.5.3) one must also specify that
observations are obtained from a random sample to insure that the Y
values are uncorrelated. When one assumes a Gaussian model, i.e.,
with normally distributed error term, the least squares esti.dtor é is
also a maximum likelihood estimator and assumes the additional
property of of being a uniform minimum variance unbiased estimator
(UMVUE) . Graybill (1976) summarizes the relevant statistical facts
about the linear regression model and considers the general !linear
regression model allowing correlated error terms with specified

covariance matrix Z. The general least squares (GLS) estimate of 8 is
8 = (X'E-1X)-ix'z-1y (2.5.5)

when L is known. When the covariance matrix is unknown, it must then
be estimated to obtain an estimate for g. Graybill (1976) discusses
conditions that the covariance matrix must satisfy to insure that the
ordinary least squares (OLS) estimator given by (2.5.4) remains a
UMVUE under the more general setting. Estimation of the covariance

matrix poses some serious problems to obtaining statistical properties

-—— . —




52

for GLS estimators of the coefficient vector. Just such a problem
occurs in the density estimation procedure discussed in section 4.3,
Unfortunately, when the properties of the error vector are only
approximately known, one must seek heuristic solutions to the
estimation problem.

Parzen (1961) considers a general setting applicable to time
series analysis. Essentially, (2.5.1) represents a discrete parameter

stochastic process. The continuous parameter analog may be written
Y(t) = m(t) + Z(t), teT, (2.5.6)

where m(t) is a mean value function and Z(t) is a stochastic process
with specified properties. 0One usually assumes that Z(t) has zero

mean and covariance kernel
K(s,t) = E[Z(s)Z(t)]. (2.5.7)

Furthermore, as in the linear regression modei, one assumes that Y (t)
is observable while Z(t) is not. The following development mirrors

Parzen (1961).

Definition 2.5.1 A Hilbert space H with inner product (-,:) is

said to be a Reproducing Kerne! Yilbert Space (RKMS) with reproducing

kernel K if members of H are functions defined on a set T and K is a

function on TxT with the foliowing properties for every t in T:

4 ' \ .
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i) K{-,t) as a function of t is in H, and

ii) (g,K(*,t)) = g(t) for every g in H.

Two special stochastic processes are of interest in estabiishing a

parametric theory for continuous parameter regression analysis.

Definition 2.5.2 A stochastic process {X({t), t€[0,®)} is said to

be a Weiner process if X(0)=0 and

i} {x(t), te[0,»)} has stationary independent increments;
ii) for each t>0, X(t) is normally distributed; and

iii) for all t>0, E[X(t)]=0.

Note that knowledge of the variance o% the Weiner process completely

craracterizes its probability law. For 0Ssst, one observes that

Var{X(t)~-X(s)] = o2 (t-s). (2.5.8)

A Weiner process is a special case of a normal process. A normal
process requires that all finite dimensional distributions be jointly
normal. Another special case of a normal process is given by the

following definition.

Definition 2.5.3 A stochastic process {B(t), tc[0,1]} is called a
Brownian Bridge process if it is a normal process with zero mean value

function and covariance kernel
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K(s.t) = min(s,t) - st. _ (2.5.9)
An important regression model applicable to the density estimation
approach of section 4.3 is given by
m
Y(1) = ] 6.9, (1) +B8(t), Ostsl, (2.5.10)
k=1

where {¢k(t). k=1,m} is a complete system of orthogonal functions in a
finite dimensional subspace of L2(0,1) and {B(t), 0St<1} is a Brownian
Bridge process. Eubank (1979) discusses optimal designs for
estimating the {ek. k=1,m} based on a finite grid of points in [0,1].
One may not have the option to design an experiment to take advantage
of these results, however. We shall not consider the probiem of
optimal designs for such models. |

Exparience indicates that the QLS estimation techniques often
compare favorably in comparison with GLS methods based on estimating
an unknown covariance matrix. However, the results are not
satisfactory when the discrete covariance structure does not have
vanishing off diagona! elements as cne moves away from the diagonal.
The applications discussed in later chapters avoid such situations.

For the modei (2.5.10), Parzen (1961) shows that the maximum
likelihood estimates of the parameters are given by

A

Ok - (Y.¢k) v J=1,m, (2.5.11)

whare (°,° is the inner product of the Nilbert function space

FW
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generated by the reproducing kernel K(s,t) of the Brownian Bridge
process given in (2.5.9). For nonlinear mean value functions or for
infinite expansions utilizing a countable system of basis functions,
the problem is more compiicated. Desirable properties for the
estimates are stated in Parzen (1961), and references are given to
proofs from other sources. Specific representations for the estimates
will be given in later chapters under nonparametric settings without
exploiting the reproducing kernel property. Such generalizations may
be desired but wil) be left to the more mathematically sophisticated
researcher.

In some situations, the orthonormal system {¢k, k=1,m} will be
composed of complex vailued functions. Brillinger (1975) discusses
some generalizations of least squares theory to handle this situation,
A complex matrix H is said to be Hermitian if the transpose of H is
equal to the conjugate of H. This extends the notion of symmetry for
real matrices. One writes H is Hermitian if H'sH. The definition of
nonnegative definiteness readily extends to complex systems. A matrix

H is said to be nonnegative definite if

m —

yaaH, 20 (2.5.12)
=

for all compiex constants a].....am. where H= (K isanmbym

W
compiex matrix., The matrices H'H and HH' are always Hermitian and

nonnegative definite.

Now, consider the complex regression model

- e+ —emath
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Y = Hg + ¢ (3.4.13)

where Y is an nx! observablie random vector, the elements of the nxp
matrix H are measured without error, 8 is a pxl vector of parameters,
and € is an unobservable nxl vector of zero mean uncorrelated random

variables with finite variance 02, Then

(Y-Hg) * (Y-HB) (2.5.14)
is minimized over all choices of 8 when g is estimated by
g = (H'H)-H'Y (2.5.15)

for nonsingular H'H. Equation (2.5.15) represents the least squares
estimates of the parameters in (2.5.13) . When the corresponding
elements are real, this reduces to the usual least squares formula.
Observe that Y and ¢ may be real random vectors and still support
complex parameters and design matrix, the only restriction being that

complex components of the product must vanish.

- ———
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3. A SURVEY OF NONPARAMETRIC DENSITY ESTIMATION

3.1 Introduction

In some general cases, parameter estimation is a form of

[ —

parametric density estimation. Estimating the mean of an exponential

distribution or the mean and variance of a normal distribution

provides an estimate of the density for that particular distribution.
Many goodness-of-fit procedures combine parametric and nonparametric
P density estimation procedures to arrive at a test statistic for a

h specified null distribution. The appliications of density estimation,
however, extend to many areas of statistics. Many parameters of
interest are functionals invoiving the parent density of a data set,
so estimating a density can lead indirectliy to estimating a parameter

of interest. For example, as mentioned in section 2.2, the satistic i}

is often written

>|

n
o [mx dF (x) = (]/n)izlxi' (3.1.1)

where Fn(x) is the empirical c.d.f. based on a random sample of size

n, thus emphasizing that 7; is an estimator of the parameter

pe [Px dF (x). (3.1.2)

-

Writing the above as a Riemann integral, one may wish to form

estimates




_}—-—.———~ -

58

pe [x f () dx (3.1.3)
where the integration may be performed numerically. The common
grouped data formula for i; given in many elementary statistics texts
is actually an integral of a histogram for the data set. Thus,
nonparametric density estimation provides a basis for attacking many
statistical problems from a nonparametric viewpoint.

Silverman (1'980) observes that density estimation is of
fundamental importance in exploratory data analysis and has many
applications in confirmatory analysis. Silverman notes, however, that
", ..density estimation cannot be used as a 'back of an envelope'
exploratory technique..." like many of the techniques of Tukey (1977),
but he does not see this as a disadvantage. In fact, the current
state of computer technology and the availability of sophisticated
statistical sof .ware should make one question any serious exploratory
analysis that does not include some form of nonparametric density
estimation.

Bean and Tsokos (1980), Tapia and Thompson (1978), Tartar and
Kronmal (1976), Carmichael (1976), and Wertz (1980) provide useful
bibliographic and expository information regarding the nonparametric
estimation of densities and reiated functions. However, the abundance
of literature on the subject should not disguise the fact that ihe
area of nonparametric density e«timation is rich with unsolved
probiems. The fundamental weakness of most procedures is thé
subjectivity required in choosing a ''smoothness parameter’. Some

objective techniques for handling this problem have been suggested,
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but in general the problem presents a serious obstacle to the
applicability of most density estimation methods.

This chapter will deal with the major classifications of
nonparametric density estimation techniques, giving details of some of
the more popular procedures. Comparisons of some of the procedures
will be made in Chapter 6, but no Monte Carlo study has been attempted
because of the difficulty in handling the subjective smoothing
requirements. Anderson (1969, as referenced in Bean and Tsokos, 1980)
and Scott and Factor (1981) consider such studies for a restricted set
of estimators, but their findings are somewhat inconclusive in terms
of the general area of nonparametric density estimation.

Many of the techniques discussed have multivariate extensions.
These will be mentioned or referenced , but attention to bivariate
density estimation will be withheld until Chapter 4. Both univariate
and bivariate techniques will be important in the study of bivariate
data analysis. Before considering the techniques, some preliminary
concepts need to be introduced.

For the following definitions it will be understood that fn it an

estimate of an unknown p.d.f. f based on a random sample of size n.

Definition 3.1.1 The mean squared error (MSE) of fn(x) is defined

by
MSELF (x)] = E{|f_(x)-fix) |3} (3.1.1)

If HSECfn(x)] + 0 as no»= , then one says that fn(x) is pointwise
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consistent in guadratic mean or pointwise consistent in mean square

for estimating f(x). |If sup{MSE[fn(x)]} + 0 as n+= , then one says
x

that fn is uniformly consistent in guadratic mean for estimating f.

Definition 3.1.2 The mean integrated square error (MISE) of fn is

given by
MISE(f ) = Ef {:lfn(x)-f(x)lidx}. (3.1.2)

I f HlSE(fn)+O as n*=, then one says that f_is uniformly consistent

with respect to MISE for estimating f.

The deinitions of weak and strong consistency apply to fn(x)

pointwise, while uniform consistency will imply

sup |f ()-f(x)] © (3.1.3)
x

in probability (weakly) or aimost surely (strongly).
Two theorems are often exploited regarding applications to

density estimation.

Theorem 3.1.1 Let XI’XZ""' and X be random p-vectors and let
g:Rp*-R be a real-valued measurahle function that is continuous w.p.l.

Then

a.s. a.s.
i) X, > X implies g(X) » g(X);

et
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i) X, > X implies g(x ) ~ g(X); and
d " 4

iii) Xn + X implies g(Xn) +> g(x).

Serfling (1980, pp. 24-25) proves this theorem and references the more
general case where g is vector-valued. By application of this

theorem, one obtains the following useful result.

Theorem 3.1.2 Let X be AN(u,drz‘) with c§+ 0. Let g be a
real-valued measurable function that is differentiable at x=u, with

g' (u)#0. Then

Q(Xn) is AN(g (W, (g’ (Wl*e?).

As will be seen later, these theorems are usualiy applied for
g(x)=log(x). Serfling discusses applications to such areas as
variance stabilizing transformations and gives several examples

utilizing choices for g.
3.2 Nearest Neighbor Density Estimciion
Loftsgaarden and Quesenberry (1965) attack the problem of

estimating a multivariate density function and arrive at a fairly '

simple method that possesses desirablie proparties. Their work appears

before that of Cacoullos (1966) who generalized the kernel approach to
the muitivariate case, and thus represents the first formal

development of a technique for multivariate nonparametric density
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estimation.
Let x],....xn be i.i.d. random p-vectors with absolutely

continuous c.d.f. F(x].....xp) and p.d.f. f(xl,...,xp). Define

Vk(x) = volume of smallest sphere centered at x
containing at least k points. (3.2.1)
Recall, a p-dimensional sphere with radius r has volume
v = [P/ 2eP1/r (pr2en) (3.2.2)

where r'{(.) is the gamma function. The nearest neighbor density

estimate of f(x) is given by
f (x) = (k/n)/V (x), (3.2.3)
n k

where k=k (n) is chosen to satisfy certain limiting properties.
Loftsgaarden and Quesenberry (1965) show that f.(x) is weakly
consistent for estimating f(x). Devroye and Wagner (1977) show that

with the conditions

i) k{(n)+o and k(n) /n-0;
ii) k(n)/log(n) +=; and (3.2.4)

iii) f is uniformly continuous on RP,

R s Y
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I

' then fn(x) is strongly uniformly consistent for estimating f(x), i.e.,
sup |fn(x)-f(x)| >0 a.s. (3.2.5)
X

For our purposes, we emphasize two theorems due to Moore and

Yackel (1977b) and restrict our attention to the univariate case.

Theorem 3.2.1 Let f (x) be given by (3.2.3) and tet the following

properties hold:
i) f is continuous at x;
ii) k(n) >~ and k(n) /n20 as n>; and

iii) k(n)/log(log(n)) »=,

Then fn(x)+f(x) a.s.

Theorem 3.2.2 Let fn(x) be given by (3.2.3) and let the following

properties hold:

i) k({n)»= and k(n) /n+0 as n+«; and

ii) JKTF)\fn(x )~f(x) |0 in probability when |x -x|SR(n),

§
]

where R{n) is the radius of the sphere yielding Vk(x). Then

. d
| vf('ﬁ)[fn(x)-f(x)] +N[o,f2(x)],
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i.e., fn(x) is AN[f(x),fF3{x)/k(n)].

As suggested previously, one would prefer that the asymptotic
variance did not include an object to be estimated. Theorem 2.3.7 is
useful in suggesting variance stabilizing transformations for such
cases. Observe, using the log transformation and applying Theorem
2.3.7, one obtains log[fn(x)] is AN[log f(x),1/k(n)]. This result is
particularly important to expansion techniques for log f(x) to be
considered in section 4.3,

Moore and Yackel (1977a,1977b) and Mack and Rosenblatt (1979)
consider a more general representation than (3.2.3) and suggest
analogies to kernel density estimation. The asymptotic properties of
nearest neighbor estimators thus mirror those of kernel density

estimators. Kernel estimators are considered in the next section.

3.3 Kerne! Density Estimation

The kernel method of density estimation provides a natural
extension to the popular histogram estimator and has a firm foundation
of approximation theory results to support its use. Rosenblatt (1956)
considers this extension of the histogram approach, and Parzen (1962)
details the theoretical implications of this technique.

Observe, a histogram estimator of f may be constructed such that
the partition of the support of f is composed of equally spaced

intervals. Consider the estimator due to Rossnblatt {(1956) defined by

——
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fo (x) = {Fq (x+h) =F,, (x=h)}/ (2) (3.3.1)

where h=h(n) is a real valued positive function of the sample size n
with h(n)»0 as nws. Rosenblatt shows that for h(n)=kn *, optimal
values for k and o may be chosen based on asymptotic mean square error
or integrated asymptotic mean square error considerations.

Now, if one lets the kernel K be defined by K(u)=1/2 for |uj<]

and K(u)=0 elsewhere, then (3.3.1) becomes

n
f 00 = [1/(nh(n)] ] KL(x=X,)/n(m)]. (3.3.2)
j=

Thus, a more general approach is suggested using the kernel K(u) as a

weight function, and forming estimators
£ ) = FL/nmIKEx=y') /h(nm)] dF (v')

n
= [1/nh(n)] § KL(x-X)/h(m)]. (3.3.3)
j=1 ]
Parzen (1962) gives a table of some common kernels and develops
conditions that K(u) must satisfy to obtain desirable statistical
properties for the kernel estimator. Two theorems are of importance

to us.

Theorem 3.3.1 Let K(u) be a kernel satisfying

i) sup |K(x)| <=3
X
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) [TIKX) | dx < =

iii) lim |xK(x)| = 0; and
X-»o

iv)  [OK(x) dx = 1.

Let f(x) be continuous at x, and let nh(n)>>~ as n+=. Then
f(x) > f(x) in q.m.

Theorem 3.3.2 Under the conditions of Theorem 3.3.1, one also has

that f (x) is ANLE(f (x)),Var{K[(x-X)/h(n)]}/(nh?(n))].

Silverman (1978) gives the stronger result of almost sure uniform
consistency.

The basic problem one faces when using the kernel methoa is the
choice of window width h(n). Different window widths produce
different shapes and in particular introduce the problem of
identifying spurious modes. Some degree of subjectivity is hence
required to arrive at an acceptable shape for the estimated p.d.f.
Silverman (1980) suggests an objective spproach to choosing a window
width, but the approach necessitates estimation of variance terms
whosa properties are questionable. Other authors have suggested
objective techniques such as cross-validation and '"ridge regression"
that seem promising but still display weaknesses that cannot be
ignored. Nonetheless, kernel density estimation has been extensively
studied in the literature and is competitive with other technigues.

Cacoullos (1966) extends this technigque to the multivariate case.

1]
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3.4 Function Approximation Methods
A problem in mathematical analysis is to approximate a member of

a suitably restricted class of functions {f(x)} by a series expansion

-
technique. The simpiest approach seeks coefficients {aj}j=I such

that
F(x) = ) a,x’ (3.4.1)
j=0
in the sense that
m . A
Vim jf(x)- J a,x)| = 0. (3.4.2)
o j=0 4

Functions expressable as in (3.4.1) are callied entire functions

(Davis, 1975). When f(x) is a density, one might consider estimators

m .
£ ()= §axt (3.4.3)
m =0 i

where Sj is a function of sample data and m is the order of
approximation determined by some meaningful criterion. The usual
series expansion for f(x) is a Taylor series, the simplest case given

by (3.4.1) with
aj-f(j)(o)/(.il). j=0,1,..., (3.4.4)

where f(J)(O) is the j-th derivative of f(x) svaluated at O0.. One

-~



68
could then base (3.4.3) on estimates of the derivatives of f(x).
However, this is usually cumbarsome and inefficient in practice.
A more general expansion is given by
f(x) =} eJ¢J.(x). asxsb (3.4.5)
js-m

where {ek}:,_, are real valued constants and {¢k(x)}:__°° is a system
of real or complex valued functions. One may then study conditions
under which the expansion (3.4.5) is justified. This problem has been
studied extensively in the mathematical literature and has recently
besn appiied to statistical probiems of density estimation.

Following the development of section 2.k, let H be a separable
Hilbert space and let {¢k(x)}:_-u be a complete orthonormal system in
H. For most statistical applications, the space of square integrable
functions L2 (a,b) is general encugh to include a large family of
p.d.f.'s and restrictive enough to permit formulation of useful
theory; thus, we wil! henceforth restrict attention to the Hilbert
space of square integrable functions. |f one chooses an arbitrary
member of this space, say f(x), then one is justified in using the
expansion (3.4.5) with x in the interval (a,b). Mathematical analysts
have studied this expansion for a veriety of orthogonal systems of
functions. Series expansions of the form (3.4.1) may be transiated to
(3.4.5) by the Gram-Schmidt orthogonalization of the basis set
{1,x,x2,...}. Orthogonal polynomials and complex exponentials are two
systems that have been studied extensively. The Jacobi polynomials

provide a general system of orthogona! polynomiails to consider, with

(.

0 i et e b b

oo S oo B - —~ B —— B —— N —— N !

“




69

Legendre, Chebyshev, and Laguerre polynomials being special! cases
(Lanczos, 1956). Complex exponential systems are the basis of fourier
series expansions (Davis, 1975, Churchill, 1969).

For statistical applications, one may seek to estimate a variety
of functions using orthogonal expansions. Of primary importance,
however, is estimating the c.d.f. or p.d.f. that generates a set of
data. One may also estimate the quantile function using these
technigques, and some authors base an approach on estimating
characteristic functions (see, e.g., Watson and Leadbetter, 1963). We
will consider several approaches using orthogonal expansions to
estimate an unknown p.d.f. either directly or indirectly. The
assumption of a finite support for f is not overly restrictive as one

essentially is estimating the truncated density given by'
fi(x) = g(x)/ fbg(x)dx, asxsb.
a

Furthermeore, transforming a data set to fall in the interval [a,b] is
not difficult and has little if any effect on most estimates obtained.
Some systems, such as Hermite polynomials, permit expansion over the
entire real line, but one is always concarned about extrapolation
problems when dealing with a finite data set.

Cencov (1962, taken from Bean and Tsokos, 1980) considers the
expansion (3.4.5) where the system {¢k(x)}:.-n is orthogonal w.r.t. a
weight function wi(x), i.e.,

[: ¢.(x) ¢ Owix)dx = 6(1,j)° (3.4.6)

J
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where 6 (i,j) is Kronecker's delta. The coefficients {¢k}:,_w are

given by
o, = [ (x) ¢, (x)w(x)dx » (3.4.7)
k a k

and as mentioned in section 2.4, these are usually called Fourier
coefficients. Cencov (1962) then obtains estimates for these
coefficients based on the empirical c.d.f. From a random sample of
size n he obtains

n
B = Joh COwbOdE (0 = (/m) ] 6 Bwl) . (.4.8)

j=1

J

The estimates given by (3.4.8) have some nice properties.

Observe,

n
b
E@) = (/m) [ ElO, (XDwK)T = [lo (Iw(x)dF (x) = 8
j=1
and hence 6k is unbiased for estimating 6. Furthermere, by the SLLN,
Gk*eka.s. This implies that for a finite parameter p.d.f. f(x) with
expansion (3.4.5) and ej-o for j>m,

m
fx) = 1 8,4, (x), asxsb, (3.4.9)

k=-m
is unbiased and consistent for estimating f(x). However, fn(x) will

always be biased for estimating infinite parameter models of the form

(3.4.5). In this case, the problem then becomes one of choosing the
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-4

o B gy Y e B o B )]

! -
—nt

T —




“"best" order m such that fn(x) in (3.4.9) is a reasonably good
estimate of f(x).

One might observe that the Cencov approach is a method of moments
estimating scheme. |If one rewrites (3.4.7) in terms of expectations,

one obtains

8, = Elo (Iw(X) ], (3.4.10)

and hence (3.4.8) is merely a method of moments estimator of ¢ As

K
mentioned in Chapter 2, many estimators based upon the e.d.f fall
into this category.

Other authors have examined Cencov's technique for specific
systems of orthogonal functions. Schwartz (1967) considers expansions
based on Hermite polynomials and obtains asymptotic results
competitive with kernel estimators. Waliter (1977) obtains further
results based on this technique. Kronmal and Tartar (1968,1976)
consider trigonometric systems, and Crain (197k) uses Legendre
poiynomials. Anderson (1969) indicates that the Kronmal-Tartar
estimators seem to perform better than the Schwart2 estimators based
on Monte Carlo studies. This would imply that the choice of
orthogonal system is crucial to the estimation procedure. Since the

literature abounds with various orthogonal expansion techniques, only

a few of the more promising ones will be considered.

Kronma! and Tartar (1968) consider estimation techniques based on '

Fourier series expansions of the c.d.f. F(x}) and the p.d.f. f(x).

They consider estimators of the form

‘s
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" m
f(x) -.Z-aj%. (x), asxsb (3.4.11)
j==m
and
N m
Fo(x) = A6 (x), asxsb (3.6.12)
j=
where {¢j}T._msatisfy (3.4.6). Using trigonometric systems of
orthogonal functions they ebtain
R m
fa®) = co/2+ ] c coslkn(x-a)/(b-a)] (3.4.13)
k=1
where
n
¢ 2/[(b-a)n] Z cos [k (Xi-a)/(b-a)] 'A(xi)’ (3.4.14)

where A:11,b]. This estimate is a derivative of an estimate of F(x)
obtained by the expansion (3.4.12) using Cencov type estimates of the
coefficients, i.e., using Fourier coefficients based on the e.d.f.
Modifications are also suggested to ensure that the density estimate
is positive. Tartar and Kronmal (1976) also consider & similar
approach based on complex exponentials (i.e., the complex fofm of the
trigonometric systems). From mode! (3.4.11) they obtain the Cencov

type estimates

n
a = (1/n) 2 exp(=27ikX ), ke-m,...,m, (3.4.15)
k j:] J
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e S R WG S —ame

o t .
[——— L ]

= L=

o I = T =

;' R L '




73

for the Fourier coefficients. Using an analogy to stepwise regression

and the MISE criterion, they omit coefficients ;k and ;-k if
a ., S 2/(m+) (3.4.16)

and terminate the order of approximation when K consecutive
coefficients are deemed not significantly different from zero. For
practical applications, Tartar and Kronmal suggest letting the maximum
order of expansion be m=10, and suggest that K=1 or 2. Large values
of m or K usually produce very wiggly estimates of the p.d.f. The
MISE stopping rule suggested by Tartar and Kronmal is similar to
Parzen's CAT criterion except it emphasizes the contribution of
parameters whereas the CAT criterion emphasizes the reduction in
residdal variance. Such stopping rules add a degree of objectivity to
an otherwise subjective endeavor, but detractors often question the ad !
hoc nature of the criterion functions.
Crain (1974) uses Legendre polynomials as an orthogonal basis
set, but he chooses to expand log f(x) instead of f(x) or F(x). Let
f (x) be continuous and strictly positive definite such that

log f(x) = ) &,6,(x) - C(8, asxsb, (3.4.17)
k=1

where {¢k(x)}:_l are the Legendre polynomials over [~1,1] and C(9)

is an integrating factor insuring that f(x) integrates to one.

Consider order m approximators




T4
m
to(x) = exp{kzleg«»k(x)- (8%)},asxsb, (3.4.18)

where m and {e:} are determined by some suitable criterion, Crain
uses the criterion of maximum likelihood and establishes conditions
that ensure a unique solution vector g* exists for the representation
(3.4.18). One observes that (3.4.18) is the canonical exponential
model representatfion of a density belonging to a finite parameter
exponential family. Furthermore, the expansion of log f(x) rather
than f(x) insures that fm(x) will be positive. One may then treat
exp{~ C(8%)} as an integrating factor to insure that fm(x)
numerically integrates to one.

Sillitto (1969) uses Legendre polynomials shifted to [0,1] to
expand the quantile function in a Fourier series and suggests using
linear combinations of order statistics to obtain estimates of
parameters. Let xln'x2n""’xnn be the order statistics from a random
sampie of size n with strictly increasing (absolutely continuous)
c.d.f. F(x). Let Epn-E(Xpn) be the expectation of the p-th order

statistic in 2 sample of size n. Then

Quw = § (2j-DxPE_, () (3.4.19)
i< il
where
'] 'J kzo | “)EJ“‘J >

and P§_|(u) is the shifted Legendre polynomial of degree j-1. A
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natural estimator of the {Aj} is provided by

A, o= (1/')j§|(—1)k I-N« (3.4.21)
j . k=0 k ik, ] o

where X. . =X, (i.e., treating the first j order statistics as
j=k,j Jj=k,n

if from a sampie of size j). Thus, Xj is a linear combination of

order statistics whose properties are discussed in Sitlitto (1969).

From the {ij} one obtains

n A
Q) = [ @i-NApr_ (). (3.4.22)

To obtain a density estimator, first compute
qW) = n{QL{G+.5) /(D I-GLG-.5)/ (1) ],

(j=.5)/ (n+1) Su< (j+.5) / (n+1), (3.4.23)

as a raw derivative of é(u) and then use the reciprocai identity

[equation {2.2.4)] to obtain

£QW) = 1/q(W), (3.4.24)

which can be plotted for x=Q(u) abscissa values to look like a density
rather than a density-quantile function if desired.
The nature of functional approximation techniques can lead to a

variety of solutions based on the nature of the expansion and the

ri



76

estimation criterion used. An annoyance is the necessity of
considering estimates only in the interval [a,b], but for most
applications this poses no real problem. One may wish to investigate
which expansions are optimal for specified distributions possessing
properties such as symmetry, skewness, wide tails, etc. However, this
may be a difficult task with little reward as suggested by some of the
simulation studies that have already been performed. Since the
primary goal is to_estimate an unknown density, one should seek a
procedure that prforms well for a large variety of probability modeis.
The class L?(a,b) provides such a large collection of interesting
models, and hence the techniques developed in this section should be
competitive for a wide range of parent distributions. An extension of
some of the technigues of this section will be considered in section
L.3. For the basic asymptotic resuits of any particular density
estimator discussed in this section, one is referred to the citation
corresponding to that procedure. We will have little use of these

results for the applications and extensions to be considered later.

3.5 The Autoregressive Approach

The autoregressive approach to density estimation due to
Carmichael (1976) and Parzen (1979b) is based upon an analogy between
the spectral density of an autor~gressive time series and the
probability density of a random variable. A density f(u), Osusl, is
said to have an autoregressive representation of order m if it is of

the form
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m

f(u =K |} a(j)exp(2miju)|-2, (3.5.1)
j=0

where a(0)=1, m is a positive integer, K is a positive constant, and

a(l),...,a(m are complex valued coefficients satisfying
g (2) =1 +a()z+...+ a(mz (3.5.2)

has all of its roots outside the unit circle. Parzen (1979b)
considers the autoregressive representation of the density-quantile
function fQ(u).

Analogous to parameter estimation for an autoregressive time

series, one estimates the parameters a(l),...,a(m) via the Yule-Walker

equations
R (0) R(1) eee  R(m=1) a(1) R(-1)
R{(-1) R{(0) eee  R(m-2) a(2) | = -] R(~2) {3.5.3)
R (1-m) ... R (0) a(m) R (-m)

where R(v) is the Fourier-Stieltjes transform of F(x),
1
R(v) = foexp(21rivx) dF (x), |v|=0,1,2,.... (3.5.4)

One estimates R(v) by

1
Riv) = foexp(Znivx) df _(x) (3.5.5)

-
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and obtains a(l),...,a(m) by solving (3.5.3). One also obtains

~ m ~ ~ )
Kp= I 3RG),
j=0

(3.5.6)

where one takes a(0)=1. The constant Km becomes an integrating

factor, but it corresponds to the prediction variance of an

autoregressive time series. In the case of density estimation, Km

will be interpreted as a residual variance to facilitate an objective

procedure for determining the best approximating order m. One selects

order m such that Parzen's criterion autoregressive transfer function,

given by

m
CAT(m) = ()/n)jzlxj'l - I(""x'

achieves its minimum at m.

(3.5.7

Carmichaei (1976) gives conditions for the convergyence of

-~ m ~
fm (x) = Kmlj‘z'o a(j)exp(27ijx)|-?

(3‘5'8)

to the true density f(x). Me also relates the autoregressive

representation to an approximation in a reproducing kernel Hilbert

space using eigenfunctions and eigenvalues corresponding to the

reproducing kernel R(v). For mnre ingsight into this interpretation,

see Parzen (1959.' 1967) and Bochner (1955).

Parzen (1979b) develops a goodness-of<fit procedure using the

sutoregressive techniqus on & uniform density d(u).

First, observe
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that under Hy: fQ(u)*fOQo(u) for some specified fOQO(u), the density

d(u) defined by

d(u) = foQo(u)/fQ(u). O<usgt, (3.5.9)

is a uniform density over [0,1]. One can then develop a

goodness-of-fit procedure based on the sample uniform density defined

by

du) = foqo(u)/fé(u). Osus]!, (3.5.10)

for some estimate ;a(u) and null value foQo(u). Parzen develops an

autoregressive estimator

m
d (W =K|7J a(j)exp(27iju) |-2, Osusl, (3.5.11)
m m
j=0
where
- 1mo L
K = [} 7 a(i)exp(2miju)|2d(u) du, (3.5.12)
m 0 j’O
Ny N
dlu) = F Qa7 (3.5.13)

" ) "
with % serving as an integrating factor and q(u) representing the
empirical quantile-density given by equation (2.2.41). The values

;(l).....a(m) are derived from the Yule-Walker equations using

i .
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a uv
D(u = foa(t) dt, 0Susl, (3.5.14)

in place of Fn(x) in equation (3.5.5). One may then use dm(u) to form
test statistics for testing H : fQ(u)-foQO(u) against specified
alternatives. The estimate dm(u) leads to an estimate of fQ(u) given

by
;‘6(u) = fl (u)/f:m(u). Osus]1, (3.5.15)

which is based on the representation (3.5.10). Observe that this
estimate of fQ(u) is "weighted" by the null density-quantile fOQO(u).
Parzen (1979b) suggests that using the normal density-quantiie for
foQO(u) provides an essentially nonparametric procedure in that a
variety of distributional shapes may still be discovered using this
symmetric ''smoothing' function.

One of the drawbacks to the autoregressive approach is the
difficulty in justifying its use in an intuitive fashion to persons
ignorant of autoregressive time series modeling. However, as Parzen
(1979b) observes, the knowledge of time series analysis is not
essential for one to be able to apply the procedure. The
autoregressive approach also seems to be a monster of computational
complexity, but many of the computational probliems have been overcome
by numerical analysts.

There are many advantages to the aqtorcqrcssive approach to

. density estimation:
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1) it provides an objective means of determining the amount of
smoothing required.

2) it provides an abundance of goodness-of-fit diagnostics for a
specified null distribution.

3) it has desirable asymptotic properties and seems to perform well
for small samples.

4) Computer software is available implementing the procedure (Parzen

and Anderson, 1980).

The objective determination of ;he smoothing order is further enhanced
in that it is intuitively justified by the autoregressive model
interpretation of the CAT function. One disadvantage to the
autoregressive approach is that it may not be extendable to the
myltivariate case, With this in mind a comparable procedure is
developed in the next chapter that readily extends to the bivariate

case.
3.6 Other Approaches

in this section we briefly mention techniques that in some cases
are variants of the three previous techniques mentiéned.

The ;pline method may be considered as an extension of the kernel
method with additional restrictions made to determine the type of
smoothing desired and the class of spline functions to be employed.
Wahba (1971) considers smoothing the empirical c.d.f. or the empirical

quantile function and then differentiates the smoothed estimators to
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obtain an estimator for the density. A selling feature of this
technique is improved rates of convergence in mean square over the
kernel method.

The technique of discrete maximum penalized likelihood (DMPL)
estimation as presented by Tapia and Thompson (1978) uses an approach
that is a combination of kernel! and spline methodologies emp)oying a
discrete approximation to a likelinood functional. The fesulting
estimator is a maximum likelihood estimator (m.l.e.) of a criterion
function with an arbitrary smoothness parameter. The abject to be

maximized is a discrete approximation to the functional

n
L(f) = .r['f(xi)exp{-a [7Ift (1) 1%t} . (3.6.1)
f= -

Tapia and Thompson present results for this approach along with
suggestions for multivariate extensions.

The reciprocal identity employed by Sillitto in section 3.4 is
also the basis for the estimator proposed by Bloch and Gastwirth
(1968) . Their estimate is simply the reciprocal of a raw estimator of
qu)=Q' (u) similar to equation (2.2.41). Their goal concerns
asymptotic variance estimation for sample quantiles, and hence they
are concerned with pointwise estimation rather than evaluating shapes.

There are many techniques for nonparametric density estimation
with each attempting to display <ome statistical or computational
advantage. The references mentioned in the first section of this
chapter discuss most of the existing techniques and provide a more

comprehensive exposition than contained in this section. Our goal has
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been to outline the major classifications of density estimation
procedures so as to provide a framework in which to make comparisons
with a new technique to be developed in the next chapter. Some

comments along these lines are offered in the next section.
3.7 Concluding Remarks

Appraisin§ nonparametric density estimation techniques involves
consideration of estimation criterion, robustness, small sample
performance, and the nature of the statistical problem of interest.
Some techniques may be exceptional for pointwise approximation of a
density but lacking when shapes, tail areas,etc., are important. For
example, OMPL estimation seems to provide good estimates at a grid of
mesh points but somewhat artificially provides the shape of a density.
Specifying more mesh points increases computational problems and slows
convergence of the algorithm. The emphasis on robustness may hinder
evaluating the nature of the tails of a density. Small sample
properties may appear satisfactory in simulations, but the probliem
remains that often small samples do not contain enough information to
diagnose weasknesses in the estimate obtained.

Perhaps the most critical problem is the existence of smoothing
parameters or orders that must be dealt with in a subjective fashion.
The autoregressive technique and the Tartar-Kronmal orthogonal
expansion technigque suggest criteria for obtaining optimal orders, but
further research is warranted into the development of meaningful order

determining criteria. However, one may question whether model
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selection should be made completely automatic, as such an approach
might prevent examining interesting models that may have more
theoretical motivation. Automation of a technique could destroy its
usefuiness in an exploratory analysis.

Another consideration is computational efficiency in light of
asymptotic requirements placed on smoothing parameters. One may find
it difficult to translate asymptotic restrictions into computer code.
Often an upper (or lower) bound is programmed into a procedure so that
asymptotic conditions cannot be made to hold, but it would be rather
foolish to pay too much attention to this matter since very large data
sets may be a rarity. Tartar and Kronmal (1976) suggest that a
maximum order of 10 will be adequate for most data sets encountered.
The BISAM program discussed in Chapter § currently restricts one to a
maximum order of ] which seems adequate for most data sets. The
legitimacy of such program restrictions is illustrated by Table 1
which shows some values for common bin width and order parameters as a
function of sampnle size to accomodate the asymptotic theory.

As a final note, the observation is made that much of the
literature emphasizes asymptotic properties paying little attention to
the practicality of a procedure. While asymptotic properties are
desirable, they are worthiess when an unmanageable algorithm is
required to perform the necessary computations. Unfortunately, this
attitud§ may be carried to extrames as indicated by the overwhelming
popularity of histograms. One naturally attempts to seek a balance
between theory and computational efficiency. This philosophy is

exemplified in the methodology and computer software development

t
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Table 1. Asymptotic Smoothing Orders as a Function of Sample Size

n log (n) log(iog (n)) SQRT (n) nxx (1/3)

20 3.00 1.10 4,47 2.71

50 3.91 1.36 7.07 3.68

100 4,61 1.53 10.00 L.64

500 6.21 1.83 22.36 7.94
1000 6.91 1.93 31.62 10.00
10000 9.21 2.22 100.00 21.54
100000 11.51 2.4 316.23 L6 . b2
1000000 13.82 2.63 1000.00 100.00

described in the following chapters.
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L. BIVARIATE STATISTICAL DATA MODELING

4.1 Introduction

Many of the density estimation techniques of Chapter 3 had
multivariate extensions. Bivariate density estimation will provide
the framework for the methods of bivariate data analysis that will be
developed in later sections. The usual problems of multivariate
analysis, however, will present obstacles to difect extension of
univariate techniques. QOne has difficulty in ordering vectors in
higher dimensional spaces as well as defining multivariate
counterparts to univariate functions. Estimating derivatives of
empirical distribution functions is made more difficult and any
smoothing must be accomplished for several dimensions. Graphical
displays must be b. 2ken into component parts for more than three
dimensions. Critical regions are more difficult to derive and power
considerations for tests of hypotheses may be theoretically
impossibie.

Qur emphasis has been on function estimation and graphical
display. For a multivariate problem of more than three dimensions,
one may seek to break up the problem into components involving three
dimensions or less. As an analogy, recall that the analysis of
variance may be treated as muitiple t-tests for pairwise comparisons.
Naturally, one would only recommend such an attack if the higher
dimensional problem had no solution or was too difficult to implement,

which is not the case in the analysis of variance analogy. Where

L‘*‘ L‘—-—i

[
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muitivariate extensions are not possible, we will recommend treating a
multivariate problem as a composition of bivariate problems to be

handled by techniques developed in this chapter.
4.2 Normal Theory

As previously mentioned, the usual first step in testing a
procedure is to see how it compares to the normal! theoretic techniques
when data is generated by a normal probability mechanism. In this
section, existing normal theoretic results will be examined. For
references, Rao (1973), Kshirsagar (1972), or Graybill (1976) provide
basic information on existing normal theoretic methods.

Recall, a random p-vectorli = (XI,X .....Xp)' has a multivariate

2
normal distribution if its p.d.f. is given by

L = @ P2 |g71/2

—

exp{--;—(_x_-y_) 'Z-‘(E_'_u_)} (k.2.1)

where E_aE(E):(E(X])....,E(XP))‘ and I = (Cov(Xi.Xj)). The case p=2

reduces to
fx,v(x'Y) = (27~ (0,3 V1=0%) ~texp{-1/[2(1-p%)]
[(x-ux) 2oyt ly-uy) 2/ ad=20 (x=uy) (y~uy) / (oy0.) (h.2.2)

where —w<ux.uv<~.c§>0,o§>0. and -1<p<l, If p = 0., one can write

f (x,y) as the product of N(u.o;) and N(u,c;) p.d.f.'s, implying
X,Y
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that X and Y are independent if p = 0. This suggests the fallowing

well known theorem.

Theorem L.2.1 If (X,Y) is a bivariate normal random vector, then
the correlation between X and Y is zero if and only if X and Y are

independent.

This theorem is the basis for many tests of independence, but often
its generalization to a nonparametric setting negates the 'only if"
part of the theorem,

In the parameterization (4.2.2) one may seek statistical
estimators of p and examine their properties. These statistics may
then be employed in testing procedures to test for independence.

The usual approach is to use Pearson's product moment sample

correlation coefficient

n n n
re § (XX (Y -V)/‘{)'_ (x,-X)2 § (v -Y)2 (4.2.3)
kzl kTR T Ry & kK |

which is the maximum likelihood estimate for p given a random sample
(XI,YI).....(XH.Yn) from a bivariate normal distribution. Under

Hozo-o. one has
rv(n=2)/('-r2) ~ t(n-2). (L.2.4)

For testing H.: p=0 vs. H : pj0 one rejects H at level aif

0 1

{
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[ri/(n=2)701-F9) > t(a/2:n-2). (4.2.5)

The usuai nonparametric approaches to tests of independence are :
patterned after these normal concepts, i.e., they seek to estimate a
population correlation coefficient nonparametrically and base tests
on this estimate. Unfortunately, most nonparametric approaches mus:
assume bivariate normality for this approach to be a yegitimate test
of independence. Huber (1981) notes that r in (4.2.3) is
distribution-free under an assumption less restrictive than
4 independence of the bivariate observation (namely, exchangeability of

the joint n-vector of X or Y values is assumed), but he observes that

r is not invariant to monotone transformations and is very sensitive
to outliers in the data. The approaches considered in the next

section attempt to overcome such weaknesses.

4.3 Some Concepts, Measures, and Tests of |ndependence

The primary reference for this section is Lehmann (1966). A
brief discussion of the more common nonparametric tests of
i ndependence will be fullowed by a discussion of some useful concepts
and measures related to testing for independence. As usual, tests
will be based on a bivariate random sample (x\'Yl)"“'(xn'Yn) with f
assumptions concerning the bivariate distribution of (X,Y).

The discussion of simple linear rank statistics of the form

n

S,= 1 clQ)a®) (.3.1)
k=1

-
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where Qk = rank(xk), R, = rank(Yk). and the functions c(i) and a(i)

k
are specified score functions, may be found in Serfling (1980) or

Ruymgaart (1974). To test the hypothesis H_.: p=0 vs. some alternative

0:
for a suitably defined correlation coefficient o one may consider

estimators of the form
n n n \
T kz|tc Q) -<lla® )-3)/ kz‘tc Q) -2 kzlta R )-3]* (4.3.2)

n n
where T = (1/n) z c(Q) and T = (1/n) | a(R ). Observe that T

k=l K kel K n
depends on the sample only through the simple linear rank statistic

Sn. Tn is defined anaiagously to Pearson's product moment sample
corralation coefficient, but it has the important additional feature
of being invariant to monotone transformations of the data since it
depends only on the ranks of the observations.

An important special case of (4.3.2) is given by Spearman's Rho.

Let a(i)=c(i)=i so that

n
S = ) Q.R,- (4.3.3)
n kZ‘ Kk

Using the convention of ordering X values and letting Rk be the rank

of Y corresponding to X {(4.3.3) becomes

k ’

n
S, " LkR (b.3.4)

k=1

When X and Y are independent, S is AN(un.on') where

s e




! N |
3 !
)
N
My =n (n+1) 2/4, o;-nz(n‘-l)‘/[lhh(n-l)]. (L.3.5)
Define
n
= - - 2 b
o, 1-6 7 Ry Qk) /In{n3-1)] (b.3.6)
k=1
which is the Spearman sample correlation coefficient, often called
Spearman's Rho (Spearman, 1904, as referenced in Randles and Wolfe,
1979) . The population parameter that pn is estimating ‘s given by
p =3 Cov[sgn(xz-x]).sgn(Y3—Y])]. L.3.7)
For testing HO: =0 wvs, Hl: P*Q, using P critical values may be
found in Table 10 of Conover (1971).
Another popular nonparametric correlation coefficient is
Kendall's Tau (Kendall,1938) based on the concepts of concordance and

discordance.

Definition 4.3.1 Two pairs (X;.Y;) and (xj'Yj) are c¢oncordant if

: %

(xi ~xj)(Yi -Yj) > 0 and discordant otherwise. é
Define :
ﬁ.

*

. “
=2 P[(X"Xz)(Y]-Y2)>OJ -1 (4.3.8) %’

or equivalently
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T = Cov[sgn(xz-x‘).sgn(Yz-Y‘)J. (4.3.9)
Estimate T by ‘
=20, -] (.3.10) J
where Un is & U-statistic defined by
n
U = 0/G) ] |Z§J ALY (K5, Y )] (4.3.11) ;
for the kernel h given by -
h[(xi’Yi)’(xj'Yj)] = '[(xf-xj) (Y;'Yj)]
-~
-sgn(Qi-Qj)sgn(Ri-Rj), (L.3.12)
-l
where 1 (.) is the indicator function defined to be 1 if the argument :

is positive 0 otherwise. When (X,Y) is a continuous random vector,
the theory of U-statistics yields the limiting null distribution of

Un. vhen X and Y are indepeadent,
U, /Tnin-1) 2n+5) 718172 $ w00y . (4.3.13)

Conover (1971) describes the usual testing procedure and illustrates
computational strategies for smploying Kenda)ll's Tau in tests of

independence. Table 11 of Conover (1971) gives critical values and a ‘ U
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description of the testing procedure for Kendall's Tau. Lehmann
(1966) relates this procedure to the difference.gigg covariance test
and suggests similar tests based on the ideas of concordance and
discordance. Hajek and Sidak (1967) show that the projection of
into the class of linear rank statistics is equivalent to Spearman's
Rho.

Blomqvist (1950) develops a procedure that counts the number of
data points lying in quadrants | or |il when the origin is taken to be
(XO.YO). He considers the specific case where X5 is the median of the

X's in the sample and Y5 is the median of the Y's. Let

q = PL(x -Xg) (Y -¥4)>0] - PL(X -Xg) (Y -Yq)<0]

= 2 PL(X-Xg) (Y=Yg)>0] - 1 (b.3.14)
and estimate g by
Q=2u, -1 (4.3.15) .
:ﬁ,l
where 4
n
u, = (1/n) kZ,'“"k"o’ (Y Y1 (4.3.16)

Blomgvist (1950) derives the asymptotic normality of Q for a wide

B BCRTIER: e ieRpsman oty 0 40

N

range of underiying distributions.

Hoeffding (1948a) discusses some of the above tasts in his




94

classic U-statistic paper and presents the following alternative test

in the sequel to this paper (Hoeffding,1948b). Let -

+
Ny

AGF) = [TITLF (x,y) =F (x,@) F (=,y) J3dF (x,¥) . (4.3.17)

—

Observe that A(F) = 0 is equivaient to X and Y being independent.
Thus a test based on an estimator of the functional A(F) would be more
general than those described above. Let

10(21.22,23) = |(zz-zl) - 1(2 -zl) (L.3.18)

3

and define the kernel h by

| SRSV S N . T W Ry S

hf(xl.yl).--..(xs.ys)] = (/8 10 axg,x ) Folxyxg,xg)

]

ID(y].yz.y3) 'D(Yl'yh'y'z)' (k.3.19)
Then
e 0/ Inlx; Y. ) (X LY )] (4.3.20)
n 5 z iI iy |5 |S

is a U-statistic that is unbiased for estimating A(F). The theory

behind this approach requires only that X and Y be continuous random
variables. Hence, this is one of the most genera! nonparametric tests

of independence available. The generalization from a parameter 0 to a

—~—

functional A(F) is a very important step in deriving new

cooom B~ ~ B B — B —— B N ——
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nonparametric tests of independence that are more powerful than
esisting procedures. This functional approach will be adopted in the
sequel using information functiona.s relevant to the problem of
interest.

Given the disparity between nonparmetric tests of independence,
one is naturally concerned with the sensitivity of the various test
statistics to specific types of dependence between random variables.
Hoeffding's procedure based on A(F) seems to be the most sensitive of
the approaches mentioned, but due to computational complexity this
procedure has not been widely adopted. Lehmann (1966) introduces some
concepts relevant to studying dependence between random variables and

relates them to existing testing procedures,

Definition 4.3.2 A pair (X,Y) of random variables is said to be

positively guadrant dependent if

P (Xsx,Y<y) 2 P(X<x)P (YSy) (4.3.21)

for all x,y. |f the inequality is reversed in (4.3.21), then X and Y
are said to be negatively guadrant dependent (NQD). If the inequality

holds for at least one pair (x,y), then X and Y are said to be

strictly quadrant dependent.

Lehmann (1966) states several theorems relating to positive quadrant

dependence. Some general results are given in the following remarks.

e

—
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Remark 4.3.1 Any bivariate normal random variables with o > 0 are

PQD and with p < 0 are NQD.

Remark 4.3.2 If X and Y are PQD, then Spearman's Rho (4.3.7),

Kendaltl's Tau (4.3.8), and Blomgvist's q (k.3.14k) are all nonnegative.

Remark 4.3.3 If X and Y are PQD, then cov(X,Y)s0. This
generaiizes Remark 6.3.1 and relates gquadrant dependence to
covariance. This fact is based on a resuit due to Hoeffding which

states

Cov(X,Y) = ["f7LF (x,y) -F (x,%) F (=,y) Jdxdy. (.3.22)

Observe that dividing inequatity (b.3.21) by the positive quantity

P{(Xsx) yields

P (YSy | X<x) 2P (YsYy) (b.3.23)

which implies that a knowledge of X being small increases the
probability of Y being small. This property is extended to the

concept of regression dependence.

Definition 4.3.3 If (X,Y) /5 a pair of random variables, then Y

is positively regression dependent (PRD) on X if P(YSy|X2x) is

non-decreasing in x. |f P(YSy|X=x) is non-decreasing in x one says

that ¥ is negatively regression dependent (NRD) on X.

—

-
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Remark 4.3.4 Regression dependence is asymmetric, i.e., Y is PRD

on X does not imply X is PRD on Y. For an example of this asymmetry,

see Lehmann (1966, pp.1145-1146).
Remark 4.3.5 1f Y is PRD (NRD) on X, then X and Y are PQD (NQD).
The converse is not necessarily true. Hence, regression dependence is

stricter than qguadrant dependence.

An even stricter condition than regression dependence is given by

the following definition.

Definition 4.3.4 Two random variables X and Y are said to be

positively likelihood ratio dependent if their joint c.d.f. satisfies

fix,y')Fi(x',y)sfx,y)f(x',y') (4.3.24)

for ail x < x', y <y'. |If the inequality in (4.3.24) is reversed, X

and Y are said to be negatively likelihood ratio dependent.

Remark 4.3.6 Likelihood ratio dependence implies guadrant

dependence and is symmetric in X and Y.

Remark 4.3.7 Any bivariate normal random variables with p > 0 are

positively likelihood ratio dependent and with p < 0 are negatively

likelihood ratio dependent.

ot sl i,
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The concepts of regression dependence and likelihood ratio
dependence are primarily employed to verify quadrant dependence. The
property of quadrant dependence is one of the weakest conditions of
dependence for which the popular nonparametric tests are sensitive.
The last part of this section suggests some parameters that seem as
generél as Hoeffding's A(F) in detecting any form of dependence
between two r.v.'s.

Kimeidorf and Sampson (1978) consider a condition known as
monotone dependence which requires the existence of a monotone
function g for which P[Y=g(X)]=1. This condition is very restrictive
and implies total predictability of Y from X. A less restrictive

measure of monotone correlation is thus proposed.

Definition 4.3.5 The monotone correlation s* between two r.v.'s

X and Y is given by

o* = sup{plf (x),g(Y)]1}, (.3.25)

where (X,Y) defines the correlation between X and Y and the
supremum is taken over all monotone functions f and g for which

O<var[f(X)]<= and O<Var[g(Y)]<w=,

One may compare this to the sup correfation introduced by Gebelein
(see Kimeldorf and Sampson (1978) for reference) which is equivalent
to p* except the supremum is taken over all Borel-measureable

functions f and g. These concepts are more mathematical than

.M B | ] ' b
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statistical and are only applied when the parent distributions are
known. Kimeldorf and Sampson (1978) do not suggest any estimators for
their correlation parameter nor do they propose any testing procedures
utilizing the concepts developed. They do, however, point out the
desirable property that p*=0 is equivalent to X and Y being
independent, and hence they have developed a correlation parameter of
special interest in tests of independence. Apparentiy sup correlation
has this same property. One need only find estimators of these
parameters to deveiop a powerful nonparametric test of independence.
Clearly this is an awesome task that has yet to be fullv implemented.

Hajek and Sidak (1967) identify locally most powerful rank tests

(LMPRT) for testing for independence. Hoeffding (1948b) discusses the

problem of obtaining unbiased tests against all alternatives. B8lum,

Kiefer, and Rosenblatt (196i) suggest a competitor to Hoeffding's
U-statistic approach based on a statistic analagous to the Cramer-von
Mises gocdness-of-fit statistic, but their approach is as
computationally complex as Hoeffding's approach and has received
little attention in statistical applications. Gibbons (1971) and
Conover (1971) consider some traditional! requirements that a measure
of association is expected to satisfy and check these requirements for
the popular nonparametric statistics. They fail to suggest updating
these requirements to included estimators of functionals like the one
proposed by Hoeffding (1948b). Unti! estimators and testing
procedures are developed for the correlation parameters considered by
Kimeldorf and Sampson (1978), the use of functionals to measure

dependence seems to be the most promising method of developing general

|
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nonparametric procedures for bivariate data analysis.

L.h Bivariate Density Estimation Using Information Criterion

Let (x,,Y,).....(Xn,Yn) be a bivariate random sample with joint
c.d.f. FX,Y marginals Fy, Fy. and associated functions under the
usual notation. Form the uniform bivariate sémple
(Q]/(n+]).R‘/(n+l)),....(Qn/(n+l),Rn/(n+1)) where Qi- rank(xi) and
Ri- rank(Yi). One may then treat this as a sample from the dependence
density d(ul,uz) to form estimates ;(u‘,uz) using generalizations of
the technigues of Chapter 3.

The nearest neighbor techniques of section 3.2 requires no
generalization since it was designed for multivariate density
estimation. The theorems stated hold for the bivariate case. One
notes that this technigue has an advantage over other bivariate
procedures in that subjective considerations of the smoothing
parameter ki{n) are not unduly complicated by multivariate
generalizations. The value Vk(x), however, becomes more complicated
in higher dimensional settings. This remains one of the easier
computational techniques in the bivariate case when compared with
other approaches.

Cacoullos (1966) generalizes kernel density estimation to include

multivariate estimators of the form

P Q.. X
fn(xl.....xp) = (1/n T h) ] KI ,x]-le)/h‘.....(xp-XJ.p)/hp]. (b.b.1)

i=1 "=l
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Often one chooses the kernel! function to be a product of univariate
kernels. Cacoulios (1966) proves mulitivariate extensions to most of

the theorems found in Parzen (1962). In the bivariate case, one has

n
fn(x.y) - [l/n(h‘hz)]jzlK[(x-xj)/h].(y-Yj)/hZ] (h.4.2)

which is usually taken to be

n
fn(x.y) = [l/n(h'hz)]jzlkl[(x-xj)/hll K [(y-Yj)/hz] (.4.3)

for univariate kernels K] and K2 . For this estimator, the window
width problem is essentially raised to a power of 2. For example,
fooking at estimates for three different window widths in the
univariate case would expand to looking at nine different estimators
in the bivariate case to include all possiblie combinations of window
widths. Nonetheless, this technique remains one of the more popular
methods of bivariate density estimation.

Tartar and Kronmal (1970) consider p-dimensional Fourier
expansion methods to obtain some theoretical results for multivariate
density estimation. Tartar and Silvers (1975) apply an orthogonal
expansion technigque to the estimation of a bivariate density and
suggest theoretical implications and applications for decomposing a
mixture of Gaussian distributions., We propose 3 new approach that is
based on the Tartar and Kronmal estimation scheme except that a

different estimation criterion is employed. The approach is motivated

by seeking a more sophisticated estimation criterion than the method

TR
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of moments and basing it on a '"better" initial estimate that the
empirical c.d.f. We will introduce this new estimator by first
considering the univariate case.

Let X‘....,Xn be i.i.d. r.v.'s with p.d.f. f. Let log f be in
L*(a,p). |If {¢k(x)};;_gs a complete orthonormal system of functions

in L2(a.b), then

«©
log f(x) = § 6.6 (x) - C(8), asxsb, (b.b.b)
k:-oo -
where {9 }°° are real valued constants and C(g} is an integrating

k' k==oo
factor to insure that f(x) integrates to one. Following Crain (1974),

one may consicer arder m approximators

m
log fm(x) -kz ek¢k (x) - c(8), asxsb, (b.4.5)
==

A m
and attempt to find estimates {ek}k._m that possess desirable

statistical properties to yield an estimate of fm(x).

If one chooses the criterion of minimum information., one seeks

parameter estimates that minimize I(fm;fm) where

A mﬂ
log fm(x) = z 8

¢k (x} - C(g). asx<b, (4.4.6)
k==-m -

k
However, fm is unrealizable so that the guantity l(fm:fm) can only be
examined from a limiting perspective as in Crain (1974). Furthermore,
different choices of m yield different estimators with the ultimate

goal! being the estimation of the true density f.

[N
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To overcome these problems consider an alternate definition of
infermation. Recall the definition of the bi-information between two
densities given by (2.3.10). Using this measure of information as an
estimation criterion, the problem may be rewritten to resemble an
exercise in continuous parameter regression analysis.

Let ;n be a 'raw' estimator of f satisfying

~

i) fﬁ+f in g.m, or a.s., and
ii) {fn(x)} is asymptotically a Gaussian process.

Conditions (L.4.7), Theorem 3.1.1, and Theorem 3.1.2 guarantee the

~

appropriate behaviour for log fn as required below. The conditions
are stated in terms of fn since this is how they are usually found in
the literature. Consider the approximate model
~ m
+
log f_(x) = ) 8,8, (x) + a G(x), asxsb, (b.4.8)
k==m

where G{x) is a Gaussian process and a is a '"generalized variance".

Using bi-information based on empirical measure and representation

(b.4.6) for an estimator of f, observe

-~ A b ~ m A
PE(F of ) = J'a|log f - kz.,?,k¢*<(X) |*af (%)

n ~ m .
- (l/n)izlllog fox)- kz-gk¢éxi)l‘ (b.4.9)

b
J




The constant term in practice is omitted during the parameter

i estimation phase and re-introduced later as an integrating factor.

l Equation (k.4.9) indicates that minimum bi~information estimators are
E equivalent to least squares estimators. Estimators of the form
(b.4.6) may then be easily derived using one's favorite least squares
regression computer program. Furthermore, if ;n(x) is chosen so that

-~

log fn is in L2(a,b), the approximation theory for Hilbert spaces

insures that the least squares estimates of the parameters will be

Fourier coefficients for a suitably orthonormalized system of
"independent variables'.

One still faces the problem of determining the 'optimal' order m,
but in the regression framework several approaches are suggested.
Hocking (1976) considers a variety of stepwise regression techniques
that may be useful in selecting a best order m. Time series criterion
functions used in determining optimal orders for autoregressive models
may also be useful, Parzen's CAT (Criterion Autoregressive Transfer)
function and Akaike's information criterion (AIC) function being
primary candidates for consideration. The MISE c-iterion of Tartar
and Kronmal (1970,1976) may also be emplioyed.

To emphasize the Hilbert space approach to approximation theory,
suppose that the estimator log ;n is deiined so as to be square
integrable (which is usually the case since most estimates will be
bounded with finite support). Let {¢k(x)}:'-_°° be an orthogonal system

w.r.t. an (x), i.e.,

b
[76.0 6;0 dF () = (i), (b.4.10)
a
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where 8 (i,j) is Kronecker's delta. Observe,
- b ~ m
. - - 8 ¢
H(Fri ) '£ lleg f, (x) kz_mkq3x>|=drn(x)

- I llog £, (x) |2dF (x) + I | Z_gk (0 |2dF (0

‘ a2 Z 0 f [log f (x)]¢ (x) dF, (x).

k=~m a

Squaring the appropriate terms and taking advantage of the

orthogonality property (4.L4.10) one obtains

m
H(f ) = (1/n) Enogf (x) +]8:°
i=1 k=-m
-2 2 8 LU/m 2 log f (x;)e, (xp 1.
k==m i=l

Taking derivatives w.r.t. GK and setting the equations equal to zero,

one has

8, = (/n) 2 log f A, (X)), (bl 11)
i=]

which is the Fourier coefficient of the expansion (k.4.5) w.r.t.

empirical measure. One may easily verify that the estimates defined

by (L.4.11) indeed minimize Il(fn;fm) so that a minimum

bi-information estimator has been obtained.

For the estimator fm(x) given by
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Y m
fm(x) = exp[ ¥ 6k¢k(x)] (b.b.12)
k=-m
to be consistent, the estimator %1(X) must be chosen so that
[log fn (x) =log fm (x)] = o(1/Vn) a.s. (b.b.13)

By Minkowski's inequality,
|| 10g f o (x)=1og f(x)}] = ||10g f (x)-log f (x)+log f (x)-log £ (x)!
< ||1og f (x)-log fn(x)H +||1og f (x)-log £ (x)]].

The second term of the right hand side of the inequality converges
aimost surely to zero by assumptions (hk.4.7), and hence ;m(x)
converges aimost surely to f(x) by assumption (L.4.13) and Theorem
3.1.1. Although this result seems straightforward, one observes that
it may be very difficult to verify assumption (4.4.13) for a
particular estimator ;n(x) because of the difficulty in understanding
the behaviour of the two estimators as both m and n approach iﬁfinity.
To show the asymptotic normality of ;m(x), let conditions (L.L.7)
and (b.L.13) hold with log ;n(x) being AN[log f(x).q:]. Furtﬁermore.
let the asymptotic variance<%‘ be independent of f(x) and leto;40 and

n%:*w as n»o, This usually foll-ws when fn(x) is consistent for

estimating f(x) and taking the iogarithm of fn(x) is a variance

‘stabilizing transformation. Then

o —a——
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[iog f_(x)-log f(x)1/0_
= [iog f_(x)~log £ (01/0+ [log f_(x)-log f(x)1/0,
= (1/a, /M VAliog f_(x)-log ()] + [log f (x)=log f(x}1/a_
= (1/0 Vn)A(n) + B(n).

By assumption, (1/cn/53»o as n*w, and by application of (4.4.13),
(Y/on/F)A(n)*O in probability as n»®, Furthermore, B(n) converges in
distribution to a N(0,1) r.v. by choice of initial estimator ;n(X)'
and hence by Slutsky's Theorem, log ;m(x) is AN[log f(x),q:].

Condition (k.4.13) severely Iimits these results and has not been
shown to hoid for any of the common nonparametric estimators. The
nearest neighbor estimate satisfies the asymptotic normality
requirements with stabilized variance, but the more stringent
condition (k.4.13) has not been verified. Nonetheiess, the estimator
gm(x) is intuitively appealing as well as being the optimal estimator
by use of an information criterion. Applications considered in
Chapter 6 will further support the use of this new estimator by
considering comparisons with some of the nonparametric density
estimators discussed in Chapter 3. However, our main concern is
bivariate extensions in the quantile domain to overcome some of the
weaknesses of other bivariate density estimators.

The extension of the orthogonal expansion technique to the

bivariate case is relatively straightforward. A bivariate orthonormal
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system is fairly easy to obtain as the following theorem indicates.

Theorem b.h.] Let {¢k(x) }k:-oo be a complete orthcnormal system for

L2{(a,b). Then {¢j(X)¢k(Y)§mk=-m is a compiete orthonormal system for
? .

L2 (A) where A={(x,y): asx,ysb }. }
b b
Proof: [ [¢i(x)¢j(y)][¢k(x)¢‘(y)] dx dy &

H (6. ()0, (NI, i h 1 for L*(A). To sh
ence, ¢j x) &, (y j,k=e S an orthonormal system for . To show
that this system is complete, first observe that if g(x,y)e L2 (A),

then for fixed y, treated as a function of x, g(x,y)e L2 (a,b), and

vice versa.

Then

implies

a a

b b
- J'a [4; () ¢, (x)] dx fa [¢J.(Y)¢‘(y)] dy

Define

— v - b
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1 if i=k and je!

0 otherwise.

e

b
h(x) = [o(y gix,y) dy.
a

ey —

b b
[ ¢, (1 glx.y) dx dy =0
aa"
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b

[ ¢.(x) hix) dx = 0

a J

and by completeness of {(tdx)} it follows that h(x)=0 a.e. Thus, by

definition of h(x)
b
f¢k(Y) Q(X:)’) =0
a

which implies for fixed x, g(x,y)=0 a.e. Reversing the order of
©

integration one obtains g(x,y)=0 a.e. and hence {¢j(X)¢k(Y)}J,k=-w's a

complete orthonormal system for L2(A).s

This theorem allows us to employ one of the many popular univariate
orthonormal systems in the approximation of bivariate densities.

Orthogonal expansion techniques still possess the problem of
choosing an order of approximation. However, as with nearest neighbor
density estimation, the problem is not as sensitive to dimensionality
increases as with the kernel method. Tartar and Krommal (1970,1976)
suggest a stopping rule in sequentially adding terms that is based on
the sample mean integrated square error. Such stopping rules are
useful hut may prevent one from observing interesting shapes that may
result from addition of extra terms. Ffurthermore, some degree of
subjectivity is always inherent in order selection criteria despite
heuristic motivations.

To use the techniques of section 3.4 applied to estimating

d(u‘.uz). the following theorem is necessary.

|

— - b
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Theorem 4.4.2 Let log fy» log fy be in L*(a,b) and let log fX.Y
be in L3(A) where A is defined as in Theorem 4.4.1. |IFf d(u‘ .uz) is
defined as in (2.2.17), then log d is in L?(B) where B is the unit

square, B = {(ul.uz): OSu',u25| }.

Proof: Observe .
!

11
Io Io [1og d(u;.u,) |? dujdu, J

1.1
- fo fo llog[fX’Y(Qx () Q ) 76, (Q (u))f (@ (u)) ] du du,

Y s

1.1
=[S, 1es fy @yl @y (u,)) -Tog £y (@ () -10g £ (Q (u) | du, du, |
1.1
= J, 1 [{es £\ @yfu).Qylu,)) |+]1eg £, (@, (u)) |2

+(cross preduct terms)}| du] du

2 A
4
J
1.1 1
2 3

s fo fo [tog .fX,Yl du, du, + ’(o [log fx[ du, J

1 1.1

2
+ jo |1og fY| du, + 2 jojo | 10g fx‘Y log fx]du]duz ]
1.1 11

+
+ 2 '{o Io |teg fX,Y tog fy|du,du, + 2 fo J'o |1og fy 109 fy|du]du2 }
by Minkowski's inequality, where we have adopted the abbreviated J

notation v g}

[T
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fx’Y = fX,Y(Qx(u‘)'QY(UZ))’ fx = fx(Qx(u'))' fY bd fy(Qy(uz))-

B8y assumption, the first three terms on the right hand side of the

inequality are fintite., By Holder's inequality,
1 1 1.1 %
2
J’o J‘o ]log. fx,y 109 fyldujduy s [ jojo [1og fy yl*dudu,]
: 5
[fo [tog f,|2du,] <@,

with the last inequality following by assumption. The finiteness of

the remaining terms follows similariy, and hence the theorem is

proved.®

The fact that log d is in L*(B) allows an orthogonal expansion of
log d, and hence one can apply the approximation techniques of section
3.4,

The use of complex exponential orthogonal systems in a fourier
expansion will necessitate the use of complex least squares procedures

to carry out the minimum information approach. Specifically, one

considers the expansion

log dlu),u,) ~j)’:k-§wejk¢j(u Yo (u) - c(® (.. 10)
where the {ejkxj,k'””‘r‘ complex valued parameters, {¢j(u)}j__° is a

univariate compliex orthogona! system, and CQ? is a complex

integrating factor. Since log d(ul,uz) is real, the contribution of

- ——
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the compiex terms must vanish. This will occur if conjugate pairs
always appear together. For a finite parameter model of order m, one
m
}

estimates the {6 j, k==m

ik by complex least squares after deriving an
initial estimate d(u].uz) of d(ulﬂJ? . The minimum bi-information

estimate d(u].uz) is then obtained from the model

log <;(u1 ,uz) - Xmi gjk¢j(u])¢k (uz) - C(é) (4.4.15)
jyk==-m
where C(é) is chosen so that d(u1.u2) integrates to one,

Some consequences of this approach are worth noting. |If the
initial estimate ;(u‘,uz) is also derived using only the rank
transformations of the data, then a(ul,uz) is a fully nonparametric
estimator requiring only an assumption of continuous data and square
integrability of the logarithms of the'underlying joint and marginal
p.d.f.'s. Furthermore, a(u].uz) is invariant to monotone
transformations of the data since it is a ranking procedure. The
parametric representation of a(ul.uz) permits complete specification
of the model by only knowing the values of m? estimates of the
parameters unlike the nearest neighbor, kernel, and penalized
likelihood approaches. The problem of defining the region of support
is surmounted by the uniform transformations to the unit square. The
estimate also possesses many of the desirable properties of its
univariate counterpart although asymptotic properties are confounded
further by aporoximating a uniform data set by rank transformed data.

The probliem of smoothing or order determination has many

heuristic rules of thumb all of which need further researc . The CAT

==
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and AIC criterion functions seem to recommend too many parameters in
initial investigations done by the author, while a minimum information
(maximum entropy) criterion seems to pick too few parameters and hence
produces an overly smoothed estimate. As mentioned zarlier, Tartar
and Kronmal {1970,1976) suggest a minimum MISE criterion that picks

the smailest order m such that

em,m Qm,-m > (n+1) -1, {4.4.16)
One is naturaliy concerned that the inclusion of too many parameters
will introduce spurious modes, so one recommendation is to produce
three estimates with varying degrees of smoothness. One may then hope
that the physical constraints of the problem or the expertise of the
experimenter will aid in model selection.

Interpreting three dimensional graphs and contour plots of
estimates of the dependence density is particularly difficult, due in
part to the radical nature of this approach to data analysis.
Consequently, one may prefer to form estimates of the bivariate
density-quantile function fQ(ui,uz) = f(Qx(u').QY(uz)). The approach

we favor forms
FQluyoup) = dlu).u,) FQy () G (y)) (b.17)

where d(ul.uz) is a minimum bi~information estimator of d(ul,uz) and
the estimated density-quantiles are obtained using the autoregressive

method. This approach alliows one to take advantage of the
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autoregressive approach to univariate data modeling. Goodness-of-fit
tests may be conducted for null distributions of the univariate
densities.

Experience with this approach reveals several interesting
features that are of importance in bivariate data analysis. Ffor local
alternatives to independence, in particular, for cases when the linear
correlation exists and is ''small", the univariate density-quantiles
dominate the shaping of the bivariate density-quantile. |f either
univariate density is bimodal and the correlation is small, ;(u].uz)
will closely approximate a flat surface so that the influence of the
bimodal univariate density will create a2 bimodal or multimodal
bivariate density-quantile. However, when two random variables are
highly correiated, the dependence density dominates the shaping of the
bivariate density-quantile and tends to smooth out any anomalies in
the univariate density-quantiles.

In practical applications one is particularly concerned that a
univariate density estimation technique not introduce modes that will
unduly affect the bivariate density~quantile function. An exampie in
Chapter 6 illustrates a situation where an outiier in a data set
introduces a spurious mode in the univariate density estimate of one
of the variables thereby causing the bivariate fQ function to be
multimodal. The estimate ;(u‘,uz) is unaffected by the outlier, but
the autoregressive approach is nduly influenced. For this example,
the outlier was easily detected so that it could be removed, but one
remains concerned about the sensitivity of the autoregressive

estimate. In particular, one is interested in the ability of the AR

LN |
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approach to detect unimodal and bimodal shapes, since clearly outliers
that cannot be explained by measurement error usually suggest
bimodality. A study was performed for 50 iterations of three types of
samples of size 100. The first sample represents a N(0,1)
distribution, the second represents a sample from the mixture

0.5 N(0,1) + 0.5 N(2,2), and the third sample comes from the mixture
0.5 N(0,1) + 0.5 N{3,2). The results are given in Table 2. Order 0

values indicate "acceptance' of a null! hypothesis of normality. Order

Table 2. Monte Carlec Study of CAT Criterion for Density Estimation

Sample Order Frequency
N(0,1) 0 L2
1 7
2 0
3 ]
b 0
.5 N(O,1) + .5 N(2,2) 0 26
! 19
2 1
? 3
1
.5 N(0O,1) + .5 N(3,2) 0 5
1 38
2 5
3 1
L 1

1 values suggest slight skewness and hints of bimodality. Order 2

values suggest bimodality with possible hints of trimodality, etc.

Mﬁ_
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When the modes are distinct as in the third case, the AR modeling
approach performs well, whereas in case 2 the technique found it
difficult to distinguish the modes. Note that high order selections
are very rare for ''smooth’ parent densities. One interpretation of
the selection of a high order is that outliers may be present in the
data, which is useful for the application of bivariate density
estimation to data analysis.

In Chapter 6 we will illustrate the use of the estimated
bivariate density-quantile to !ocate modes in a bivariate
distribution. Naturally, one may wish to investigate this approach
with different estimators for the univariate density-quantile
functions, but as stated, we feel that the AR approach has the most

objective and consistent results.

4.5 Some Entropy-Based Measures of Asscciation

in section L,2 some popular nonparametric tests of independence
were considered and viewed in light of some conceptshand measures of
dependence. The cbservation was made that only certain functionals
and variations of sup correlation were general enough to detect all
deviations from independence. In this section a new functional based
on the concept of information is introduced that is as general as
Hoeffding's A(F), and various testing procedures are proposed using
this new measure of dependence.

Let (X,Y) be bivariate random variables with joint c.d.f. FX,Y'

joint p.d.f. . marginal c¢.d.f.'s Fy and Fy, marginal p.d.f.'s fy

R
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and fY.and quantile functions Qx and QY' The dependence distribution

function 0(ul.u2) and the dependence density d(u,.uz) are defined as
in section 2.2, equations (2.2.16) and (2.2.17). Using equation
(2.3.1) defining information, one obtains the information between the

joint p.d.f. fX v and the product of the marginals fX and fy by
E ]

l(fX,Y;ffo) - LLD{log[fx’Y(x.y)/fx(x)fY(y)]}

-fx,Y(x.y) dx dy. (4.5.1)

With the usual change of variable u] = Fx(x) and u2 = FY(y). onhe

obtains

1.1
Hfy) = L L 1ealey (0 () 10y (uy)) /8, @y () Fy 0y (4))]

|
(fx,v XY

'fx'Y(Qx(u]).QY(uz)) qx(u])qY(uz) du,du, (4.5.2)
which reduces to

11
1 ( ) = L & [log d(u].uz)] d(u],uz) du, du,

v iy

= -H(d), (4.5.3)

where H(d) is the entropy cf the dependence densify. From the

information inequality one obtains

o~

e
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I(fx’Y;ffo)-O PFf fx,Y(x.y)-fx(x)fY(y). a.e., (b.5.4)

and thus equation (4.5.3) leads to new techniques for ascertaining
whether X and Y are independent,

The technique to be investigated will estimate H(d) by estimating
d and using various numerical or statistical integration procedures.
Then Monte Carlo studies will be empioyed to investigate the
properties of the estimator.

~

One solution is to estimate d by d and then form
-~ 1 1 ~ -~
Hid) = [ [, Dlea d(uju))] d Dyysu)
n ~
= (1/n) ¥ log d(Qk/(n+l).Rk/(n+l)) (4.5.5)
k=1

where D(u‘.uz) is the empirical dependence distribution function with
jumps of size 1/n at the points (Qk/(n+l).Rk/(n+l)). Recall,
Qk-rank(xk) and Rk-rank(Yk). Another solution might be to numerically
integrate
H@ = ([ {log dlu ,u)} dlu ,u) dud (4.5.6)

fofo og ul,uz Uy, ujdu, .5.
at a suitable grid of points, but this approach seems somewhat
artificial with inherent extrag=lation problems that might provide
deceptive results.

To form d, one treats (Q'/(n+l),R'/(n+l)).....(Qn/(n+l).Rn/(n+l))

as a random sample from a bivariate uniform distribution and then

e

.
—

” (l
e e

R AT EY V- + 4 LT L PP Dl TR




T

119

applies one of the density estimation techniques of Chapter 3 that
permit bivariate generalizations. Two techniques will be mentioned
here for obtaining H(d).

One approach is to subjectively decide upon the best window width
or smoothing parameter to produce a kernel or nearest neighbor
bivariate density estimate ;(ul.uz). One observes that such a
subjective approach unduly complicates the procedure, but such
problems cannot be overcome. The second approach is to form ;(u].uz)
using ;(u].uz) as a dependent variable in the regression approach of
the last section. One then may form estimator (4L.5.5) or (4.5.6).

The parametric representation afforded by the regression approach

makes method two less computationally cumbersome than it would be in
the first approach. Hence, one uses (L.5.5) for a suitable choice of
d and (k.5.6) for the parametrically smoothed bi-information density.

A Monte Carlo study of H(;) and H(a) has been carried out for 100
iterations of samples of size 50 and 100 for a bivariate norma!
distribution and a distribution composed of one standard normal
marginal and another marginal corresponding to a conditional
Cauchy (0,1) distribution. The sensitivity of Pearson's r to outliers
is well documented and hence is not investigated here. Tﬁe
nonparametric procedures have well known robustness properties which
are mimicked by the entropy statistics since the latter are
constructed using ranks of a "trimmed" data set. (A discussion of the
computer algorithm generating H(;) and H(a) may be found in the next
chapter.) Table 3 presents several guantile values for the various

entropy statistics for the sample sizes 50 and 100 obtained from the
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simulations. The notation H(d8) refers to an order 8 expansion,
meaning that all 8 bivariate combinations of the indices (-1,0,1) were
included. H(d24) contains all 24 combinations of (-2,-1,0,1,2), etc.

Note that in each case the index (0,0) is excluded since the constant

Table 3. Quantiles for Entropy Statistics

n p | H(d)  H(d8) H(d2k)  H(dkB)  H(dg)~H(d)

50 0.01 -0.222 -0.229 -0.293 -6.289 -0.206
0.05 -0.137 -0.179 -0.226 -5.294 -0.163
0.10 -0.100 -0.169 -0.202 -kb.477 -0. kb
0.25 -0.067 -0.145 -0.179 -2.838 -0.102
10¢ 0.0t -0.251 -0.163 =-0.197 =-0.248 -0.029
0.05 -0.181 -0.139 -0.179 -0.204 ~0.002
0.10 -0.157 =~-0.128 -0.163 -0.197 0.018
0.25 -0.132 -0.107 -0.149 -0.174 0.0L8

term has been incorporated into the integrating factor.

Power studies were conducted for various values of o for the
normal sample and for a sample (XI’YI)""’(xn'Yn) generated by Y=X+(C
where X is a standard normal random variable and L is a Cauchy(0,1)
random variable. This model corresponds to a general regression model
with Cauchy errors. |t may be shown that Y is positively regression
dependent on X since the conditional distribution of Y given X=x is a
Cauchy with median x. Hence, only the normal theory statistic r will
have assumptions violated for this case.

The results for the power study may be found in Table 4. For

n=50, the entropy statistics are disappointing in comparison with the

v
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Table 4. Monte Carlo Results for Power Study of

Measures of Association

significance levei=0.10

N_RHO r o °n Tn_ H(d) H(dB) H(d2b) H(du8)
50 0.2 0.59 0.k O.46 0.31 0.11 0.22 0.16
0.4 0.90 0.91 0.91 0.58 0.21 0.23 0.09
0.6 1.00 1.00 0.53 0.71 0.31 0.32 0.15
100 0.2 0.67 0.66 0.65 0.37 0.18 0.17 0.19
0.4 0.98 0.98 0.98 0.53 0.51 O0.48 0.42
0.6 1.00 1.00 1.00 0.98 0.31 0.90 0.86
Cauch
100 0.32 1.00 1.00 0.90 0.95 0.96 0.9k

— e b ok

For Cauchy sample, the g.o.f. statistic H(d-Normal) ~H(d)
has power 0.88.

correiation statistics for local alternatives to c=0 in the normal -

case, although H(33 is fairly competitive. This suggests that the
density estimation approach shouid not be recommended for small

samples, particulariy using the numerical integration statistics. One
suspects that the probiem of extrapolation has unduly weakened the %
effect of the statistics, while for H(aﬁ no extrapolation is
attempted. For n=]00, the results are more promising, and for the
non-normal case, the entropy statistics perform well compared to

Spearman's Rho and Kendall's Tau, and, as expected, greatly surpass

the normal theory statistic r. For this study, we also included the

goodness-of-~fit statistic
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N 4"
H(do)-H(d) « ~(1/2)10g(1-r2) - H(d) h.5.7)

whose quantile values obtained for the normal cases are also given in
Table 3. The power result of .88 suggests that this entropy based
statistic may be competitive with existing procedures for testing
bivariate normality. However, further simuiations are warranted.

The poor performance of the entropy statistics suggests that some
modification be employed to overcome the cunsistency and power
problems. Rather than employ a numerical Riemann integral, an
alternate approach is to consider the numerical Lebesgue integral for
orders 8, 24, and 48. Recall, the raw entropy statistics based on the
nearest neighbor estimate is a Lebesgue integral w.r.t. the empirical
c.d.f. To obtain a numerical approximation of the Lebesgue integral
for the minimum information estimators, the estimated dependence
density is evajuated at a k by k grid of points in the unit square and
then is treated as a vector of dimension k2. One ther forms the
corresponding vector of d log(d) values and obtains a robust measure
of location such as the trimean that serves as a numerical
approximation to the Lebesgue integral. The amount of calculations
involved prohibit a large scale simulation of this approsach, but
limited experience with some of the data sets considerd in Chapter 6
are promising at least for cases invoiving small correlations. The
corresponding use of quantiie techniques to analyze the vector of d
and d log(d) values may aid in determining an appropriate order of
expansion.

Without supporting theory, a general! simulation study for a wide
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class of alternatives to bivariate normality is infeasible. The
resuits of Vasicek (1976) are promising but need to be extended to the
bivariate case. Ffor the simulations performed, the neares: neighbor
density d was computed using k(n}=5. in practice, one might try a
variety of values of k{n) to arrive at a "pleasing'" shape, and then
examine the entropy measures. Unfortunately, this subjective approach

cannot be incorporated into a simulation study.
L.6 Other Applications
L.6.1 Nonparametric Regression

Let (XI'YI)"°"(Xn'Yn) be a random sample from a bivariate

distribution with c.d.f. p.d.f. f , and associated
1]

F
X,y ° X,Y

marginal and conditional functions with the usual notation. One often
attempts to discern a relationship between X and Y in order to predict

Y given a value of X. An important object in this cases if the

regression function

rix) = E[le-x] - fwy fle (YIX) dy. (b.6.1)

From the definition of the conditional p.d.f. one may express {4L.6.1)

by

ri(x) = h(x)/fx(x) {L.6.2)

et ————— :
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where
hix) = [Ty £y y(xoy) dy. (4.6.3)

Watson (1964) and Nadaraya (1964) as referenced in Cheng and Taylor
(1980) used representation (4.6.2) and kernel density estimation

results to suggest estimating r(x) by
F(x) = hx)/F(x) (bh.6.1)
where F(x) is the kernei density estimate of f(x) given by

fx) = [T0i/mn)] KLOe=x') /h (n) JeF_(x")

n
=  [i/oh(n)] § KLOx=X;) /h (m) ] (4.6.5)
j=!

and ﬁ(x) is related to the kernel estimate by
he) = [Ty [1/h(n)] KL(x-x") /h ()] dF (x',y)

n
= [1/nh(m] ¥

Y K[(x-xj)/h(n)]. (4.6.6)
J

1
Rosenblatt (1971) gives properties of r(x) and Cheng and Taylor (1980)
extend these to a more general case of a k-dimensional X-vector. This
technique is completely general and can be thought of as taking a

weighted average of Y values based on the X observations. This is

[P




-

_.—-—------_——-—

B

125

easily seen by expressing (L4.6.4) as

P00 = T KX ) /MTY /) KExeX) /h (], (h.6.7)
j=1 ! j=1 ]
The kernel K acts as a focusing function giving more weight to Y
values for xj in a neighborhood of x.

The representation (4.6.4) suggests a multitude of estimators
based on the various nonparametric density estimation techniques of
Chapter 3. Asymptotic properties may be intractable for many of these
cases, however. Nonetheless, one may seek to rewrite (L.6.4) to
permit application of some of the quantiie based techniques mentioned
previously.

in Chapter 2 we observed that (L.6.1) could be transiated to a

regression gquantile function by the formula

1
er(ul) = Io QY(uz) d(u].uz) duz. (4.6.8)
where d(ul,uz) is the dependence density. This formula is derived
from (4.6.2) with the transformation x-Qx(u‘) and y-QY(uZ). One
obtains
1
Q) = QM) Q@) () /(@ ()] 4y u)

1
= [, Qytu Tfy v .QUu )/, (@) ayfu)) du,  (h.6.9)

which then simpifies to (4.6.8) by virtue of the reciprocal identity.
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Estimation of (4.6.8) may be obtained by numerically integrating
products of sample gquantile and dependence density functicns. For
U

example, selecting a grid U of equally spaced values

21777 2m

between 0 and 1, one obtains the Riemann sum

rQ, (u,) = W'")J-El Qy (uyy) dluyuy)) (4.6.10)
as an estimator of the regression function. A regression curve may
then be plotted for various values of u].

Parzen (1979a) emphasizes the conditional quantile function in
approaches to nonparametric regression. He considers versions of
(4.6.7) in the quantile domain with emphasis on smoothing raw
regression function estimates based on empirical quantiie functions.
in Parzen (1977), raw estimates of the partial derivative of D(ul.uz)

w.r.t. u, provide alternatives to (4.6.10) for estimating er(ul). but

|
this is proposed only as a ''quick and dirty" technique. Our emphasis
on obtaining smooth estimates of d(u],uz) should make (4.6.10) the
preferred estimator of the regression quantile function, but in any
case, asymptotic properties remain to be investigated.

We have only examined nonparametric regression from a density
estimation approach. Huber (1981) suggests robust least squares
procedures, and Hajek and Sidak (1967) consider some linear rank tests
for hypothesis testing concerning linear regression coefficients. We
have avoided any assumption of linearity in our discussion, but when

such an assumption is justified, nonparametric approaches to the

Jinear regression problem may be preferred. In a pure modeling
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approach, one would desire some sort of residual analysis that tests

for white noise of residuals in an effort to evaluate the model given

by (4.6.10).
4.6.2 Discrimination and Classification

Often one seeks to classify an individual with bivariate
characteristics (X,Y) into one of two parent populations. |If data is
available on each population, one seeks to classify (X,Y) into the
population that seems most closely related to (X,Y). |If the bivariate
p.d.f.'s fl(x,y) and fz(x,y) of populations 1 and 2, respecti&ely, are

known, one forms the likelihood ratio
A(X,Y) = fl(X.Y)/fz(X.Y) (L.6.11)

and classifies (X,Y) into population 1 if )(X,Y)21 and into population
2 otherwise. |If the two populations have normal distributions with
common unknown covariance matrix I and different unknown mean vectors
Y, and Ha, one obtains the corresponding sample estimates of these

quantities and forms the sample discriminant function
= - X X t =1y - X
W X - (1/72) (X, + X010 s X - K] (b.6.12)
where X's {x,Y), Zi = (YI.VI). etc. One then assigns (X,Y) to

population | if W>0 and to population 2 otherwise. Morrison (1976)

gives an adequate description of this normal theorevic approach.
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If the assumption of bivariate normaiity cannot be justified, one

may seek to estimate the unknown densities of each population to form
and proceed as before. An alternate approach is suggested working in

the quantile domain. Ffor a sample from population 1, one estimates

d{u],uz) and univariate c.d.f.'s F, and F,. For population 2,

X Y
estimates of d;u'.uz). Gx. and GY are obtained. One then forms
L =d (F 3 i (G .h .6.14
A dl(FX(X)'FY(Y))/dZ(GX(X) GY(Y)) (b.6.14)

and proceeds accordingly. Observe, if in sample 1,

X(k)SXSX(k+I).

U]-FX(X). One may prefer using estimates of the bivariate

density-quantile function over using estimates of the dependence

FX(X)- k/(n+1) is an acceptable raw estimate for

density. Such an approach, however, seems to assume equal marginals
for both populations. While probabilities of misclassification based
on (L.6.14) may seem difficult to obtain, this approach '"exhausts the
data" by utilizing all of the relevant sample functions (if only
indirectly) in creating the discriminant function. Thus, the approach
would seem more sensitive than an approach dealing only with
likelihood ratios in the densii, domain, and hence one might expect
small probabilities of misclassification using this technique. This

remains an open research question.
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L.6.3 Parametric Modeling

2 useful extension of the minimum information density estimation
technique concerns estimating parameters of a parametric modei for the
purpose of ascertaining the adequacy of the model. Consider the

canonical exponential model of order m given by

m
log f(x) = ¥ 9,T (%) =~ C@.....0), (4.6.15)
k=1

where T‘(x),...,Tm(x) are called sufficient statistics. This density

maximizes entropy subject to the constraints

fw Tk(x) fx) dx = 1., k=l,...,m, (b.6.16)
where Tp,...,T, are called moment parameters. This implies that the
norma) distribution maximizes entropy over all other distributions
with specified mean and variance. Using the minimum information
approach for the parametric model (k.6.15), one obtains least squares
estimates for the mode) parameters which can lead to estimates of the

moment parameters. Recall, from the theory of exponential models, one

has
(a/ae') c(e,....,en) = T (4.6.17)

and hence under suitable regularity conditions the moment estimators

e E
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~ n
LA (1/n)j§lrk(xj). k=1,..,m, (4.6.18)
are also maximum likelihood estimators and thus the estimators
9k = ek(r‘,...,rn), k=1,...,m, (4.6.19)

are m.l.e.'s by the invariance property. Hence, one may form the
least squares estimates and compare these to the m.l.e.'s for a
diagnostic check of the adequacy of the parametric model given by

(k.6.15).

Example 4.6.1 For the normal case, Tl(x)-x and Tz(x)-x‘. so that
T =H and Tz-u‘+ci. The canonica) parameters are given by elu(u/a‘)
and 62--1/(20’). The regression approach would form estimators of the

parameters in the model

log f{x) = g+ Oyx + 9,x? (4.6.20)

with a stochastic element introduced when the nearest neighbor

estimate replaces f(x) in the mode).

Example 4.6.2 For a gamma model with density

f(x) = [6%/7T(a)] x2 lexp (-bx), (4.6.21)

where x>0, a,b>0, the canonical form is

[ ——
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log f(x) = 60 + Sllog X + ezx. (L.6.22)
where T'(x)-log x and Tz(x)-x with Blt(a-l) and 9,=-b. For a
location-scale gamma model, problems are encountered unless the
location parameter is known. For unknown jocation, one estimates it
by the minimum value of the data and then treats this as the true

parameter value to be able to obtain the least squares estimates for a

and b.

This parametric modeling approach will be illustrated in Chapter
6 applied to normal and gamma data. Note that this technique is not
recommended for parameter estimation when the model is known to be
valid, but instead is suggested as a method for checking the adequacy
of a model. One may wish to investigate distributional properties to
suggest inferentiai goodness-of-fit procedures. Bivariate extensions

are fairly straightforward and will not be considered here.
L.7 Concluding Remarks -

Perhaps the greatest weakness of nonparametric statistics until
now has been its failure to adequately handle multivariate problems.
The problem seems to center around the insistence upon carrying out
inferential procedures on parameters of a probability model and the
inability to nonparametrically estimate these parameters. For
example, the contrasts of interest in an analysis of variance setting

often rely on robustness properties in the absence of nonparametric
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multiple comparison procedures. Heuristic solutions (such as
replacing the data by ranks) may appear to work in some cases, but
further study is warranted.

We have followed the recent approach of placing function
approximation ahead of parameter estimation. Naturally this is a more
difficult estimation problem, but once solved, it leads directly to a
solution to estimating parameters of interest. Unfortunately, most
techniques must reside in the category of the exploratory rather than
confirmatory because of the lack of theory to support the procedure.
The acceptance of Monte Carlo studies has gradually improved over the
years, but unfortunately, function approximation does not lend itself
to general Monte Carlo experimental designs especially when seeking
comparisons for a wide class of alternatives. Many of the expansion
techniques have adequate theoretical motivation, the main problem
being that of order determination. Consequently, techniques such as
the autoregressive approach of Parzen or the orthogonal expansion
technique of Kronmal and Tartar that exhibit objective order
determining criterion are the most promising of those suggested in the
literature. This motivated the expansion techniques considered in
this chapter. Unfortunately, the criteria employed did not seem to
perform as well as hoped, but once a suitable criterion is obtained,
the minimum information technique will become even more useful than
approaches such as the kernel method that necessitate examining
multitudes of shapes to arrive at a conclusion. Furthermore, the
generalization of methods based on the dependence density to a

multivariate setting are fairly straightforward especially in the

.
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nonparametric regression framework. The sample size required in a
multivariate setting to adequately perform function approximation will
always pose a serious problem, however, and hence parametric
approaches will continue to dominate small sample settings when one

can justify the assumed model to any degree of satisfaction.
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5. COMPUTER SOFTWARE FOR BIVARIATE DATA ANALYSIS

5.1 Introduction

The major statistical computer packagzs have yet to fully enter
the fields of nonparametric density estimation or bivariate data
analysis. Consequently, one must create his own computer programs to
carry out many of the procedures detailed in this work. For
nonparametric density estimation, most statistical packages will have
histogram procedures, but only IMSL (International Mathematical and
Statistical Libraries) provides routines to do other types of
nonparametric density estimation. When one ventures too far from
classical normal theory procedures or some of the more popular
nonparametric techniques, the existing statistical software packages
are of little help.

Ideally, the examination of density curves is carried out in an
interactive computing environment so that shapes can be examined and
adjusted quickly to arrive at an "optimal" choice for the estimated
density. However, the programs we will discuss were written in
FORTRAN for batch processing. This was done for a variety of reasons
which will not be discussed here. The transtation of FORTRAN code
into an interactive language such as BASIC is not too difficult, and
some systems have time sharing FORTRAN capabilities. The system
employed for our procedures has a ''simulated" interactive language
that permits quick access to batch output at a CRT terminal. The

computing environment for program implementation will be discussed
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later.

The writing of computer programs is considered to be an art by
some, and.a particular program often mirrors something of the
personality of its creator. Thus, examination of the code that we
have written illustrates a certain philosophy of programming that will
be discussed in the next section. The actual programs that we have
written will be discussed in sections 5.3 and 5.4. We will conclude
this chapter by examining the facilities that were used and the

typical effort required to execute a program and retrieve the results.
5.2 A Philosophy of Statistical Computing

There are many ways to attack the writing of computer code to
carry out some desired purpose. The recent popularity and utility of
structured programming has caused it to be a widely practiced form of
program construction. The idea behind this approach is to carefuilly
organize a program so that it flows smoothly from one computation to
the next without haphazard placement of loops and branches. There are
a variety of ways to organize a program with this approach in mind.
One method is to create a bank of subroutines each of which is
carefully designed to carry out a specific task, and then write a
fairly terse main program that systematically accesses these routines.
Using this approach, one may discover that efficient routines already
exist that perform certain tasks, and hence one need not expend effort
in ereating the routine oneself. The IMSL FORTRAN subroutine )ibrary

contains many useful techniques backed by extensive testing that could
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probably not be matched by a programmer with limited resources. Many
systems maintain a variety of subroutine libraries and . stalogued
procedures that may be useful to programmers. With a collection of
tested subroutines at ones disposal, the trauma of debugging a large
program is greatly reduced. With this in mind, one may wish to insert
checks and flags in a routine to guard against its misuse in later
applications. An alternate philosophy adopted by some is to write
compietely self contained main programs that systematically perform
every task in the main body of the program. Careful documentation of
such programs make it easy for one to examine the code to discover
what tasks the program is performing. Arguments do not have to be
passed back and forth to subroutines and array dimensioning is handled
only once without the need to trace dimension values throughout a
program. While this approach has some advantages, the major weakness
is that a great deal of répitition may occur in writing the program so
that less effort may be spent thinking of new approaches or ways of
making the program more efficient. We favor the subroutine approaéh
as one will soon realize upon examining our progréms.

There are three goals inherant in computer program construction.

1) The program should correctly perform the task for which it was
intended.

2) The program should work, i.e., it should be retiable, anticipating
any awkward contingencies that might occur.

3) The program shouid be easy to read and easy to maintain.

F—

| S—

Iz-m-.—l ‘ o ; A .

e e -




137

A fourth goal is often added to this list.

L) The program should be portable, i.e., it should be designed to work

in a general computing environment for a variety of computer

systems.

Using a popular language such as FORTRAN or COBOL and avoiding machine
dependent conventions should promote portability, although most likely
some translation will be needed when going from one system to another.
Since we anticipate that our programs may be used at more than one
computer installation, we have made some attempt to avoid machine
dependent conventions.

The goals presented above are important, but as with the theory
vs. simulation dilemma, one can never anticipate the infinite
possibility of data sets that may be exposed to a program. Therefore,
anticipating such problems as division by zero may promote the
efficient use of a program, especially if an error might occur in a
minor step not crucial to the general task of the program. insertion
of options that default to logical values will also help insure that a
program completes its task despite minor errors of no consequence.

A wide variety of computer languages exist sach aimed at
empasizing a particular application. FORTRAN is designed for
scientific computations while COBOL is geared more towards business
applications. Thus COBOL may be better suited for character
manipulation while FORTRAN might be preferred for "number crunching".

Since our main goal is one of computation, we have chosen to write our
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programs in FORTRAN., Also, as suggested, a FORTRAN program may
written to be fairly portable. The only problems might occur in
certain format conventions or specialized functions such as array
manipulation. Furthermore, the popularity of FORTRAN will make the
code understandable to most users in case they wish to make
modifications tailored to their own specialized applications.

Although many options are included in our programs, a user may wish to
add or delete options to reflect the specialized environment in which
he is working. The FORTRAN language has many qualities to recommend
it which need not be discussed here.

Finally, we note that while efficiency is aiways an important
concern especially in the construction of a large program, one may be
more concerned with documenting and organizing a program so that it
may easily be used by others. Naturally, one seeks a suitable
compromise between efficiency and ease of use so that a program is not
prohibitively expensive or time consuming. Our first concern is for
accuracy and precision. When these attributes are sufficiently
safeguarded, then one may search for ways to make a program more
efficient. Clearly one does not desire a program that quickly and
efficiently computes the wrong answer, aithough this is a common
occurence in computer applications. More insight may be gained into
this philosophy by a closer inspection of the routines we have
written., Some comments will be made about obstacles that had to be
overcome, and references will be made to the authors of contributing
routines. For a discussion of statistical computing one may consult

Kennedy and Gentle (1980), and for a general discussion of the science
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and art of computing, Knuth (1968) is a useful reference.
5.3 Univariate Density Estimation Routines

The popularity of the histogram makes it readily available from
many statistical computer packages. The Statistical Analysis System
(SAS, 1979) provides histograms in its CHART procedure. The BMDP
Biomedical Computer Programs (BMDP, 1979) provide two programs, BMDP2D
and BMDP5D, that produce histograms for a data set. MINITAB (Ryan,
Joiner, and Ryan, 1975) has a command HISTOGRAM that will produce a
histogram for a specified data vector, The Statistical Package for
the Social Sciences (SPSS, see Nie, et al., 1975) provides a histogram
through the procedure FREQUENCIES. All of these routine have an
objective default for computing cell widths and boundaries. For
example, PROC CHART of SAS by default will let me=FLOOR[1+3.3 log(n)]
where FLOOR is the greatest integer function and n is the sample size.
The range of the data is then divided into m equally spaced intervals
yielding h=range/m.

The histogram is the only form of density estimation available
from most packages. IMSL has two routines that offer alternatives to
the histogram, but it is the only major source of such routines.
Kernel estimation is performed by the IMSL routine NDKER for user
provided kernel and specified window width. The routine NDMPLE
performs discrete maximum penalized likelihood density estimation for

user specified smoothing parameter. These routines are well

documented and easy to use.
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For alternatives to the existing software, one may consult the
literature to obtain algorithms to be programmed. The moment
techniques of Cencov (1962) are easily programmed once one has
surmounted the problem of generating orthogonal systems of functions
in L? space. Tartar and Kronmal (1976) provide a very readable
account of implementing density estimation techniques. Based on these
references and the use of such numerical algorithm sources as
Abramowitz and Stegun (1972), one may readily construct FORTRAN
routines to perform density estimation.

For the minimum information techniques developed in Chapter &,
one may use existing regression software to impiement the procedures.
However, for complex exponential systems some adjustments may have to
be made. The TIMESBOARD FORTRAN library of Newton (1979) contains
some useful routines for handling complex regression in addition to
many general purpose routines. An alternative to obtaining FORTRAN
regression routines to implement this procedure is to create a
"'regression data set'" and use this as input to a procedure such as
PROC GLM of SAS. Other regression software may also be employed.

The author has written five FORTRAN routines to perform
univariate nonparametric density estimation. These routines along
with the IMSL routine NDKER will be applied to several data sets in
the next chapter to illustrate their use. The five routines we have
written are called NNDEN (Nearest Neighbor), KTDEN (Kronmal-Tartar
type with trigonometric polynomials), TKDEN (Tartar-Kronma! type with
complex exponentials), MIDEN (Minimum information type with Legendre

polynomials), and CMPDEN (minimum information type with CoMPlex
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exponentials). The routines NNDEN, KTDEN, and TKDEN are easily
written following the algorithms described in the literature and hence
will not be listed here. The routines MIDEN and CMPDEN are listed in
Appendix A. Appendices C and D contain a collection of subprograms
accessed by these procedures.

The density estimation routines were written to accept standard
input and produce standard output within the routine, passing as few
arguments back and forth as possible. Our purpose for writing the
routines was to get plotted output quickly and efficiently for a
variety of smoothing parameter values. For more practical
applications, one may wish to pass the actual estimated density vatlues
back to the main program to be used for further investigation or
analysis. This is easily accomplished by modifying the calling
arguments. The only probiem might be in controlling the values at
which the density is evaluated, but routines are available for
interpolation if necessary. For the parametric orthogonal expansion
models, one need only pass paramter estimates with the corresponding
variable indices back to the calling program to be employed as needed.
As suggested, this is an advantage in using expansion techniques,
namely, that one need only knowledge of a few paramter estimates to
compietely describe the estimated density rather than knowledge of
function estimates for a large number of values. Ffor example, a
vector of size 10 may store all of the relevant information about an
orthogonal expansion approximation, while vectors of size 50 or more
are usually required for nearest neighbor, kernel, or DMPL type

estimates, depending upong the number of estimated values one wishes.

el
A

. e e« et

il e

FE




142

Typically, the unique feature of each density estimation routine
is the algorithm employed to derive the estimate. Otherwise, each
routine has a general framework. This framework is outlined as

follows:

Input: Data (X}, sample size (N), minimum value of data (A or XMIN),

maximum value of data (B or XMAX), and options (IOPTk).

Preprocess Data: |If data is modified by an algorithm, let Y(I) = X(I)
and use Y vector in the procedure. |f trimming or scaling is
required, perform necessary transformations befcre exposing
data to the algorithm. (Usually standardizing to an interval
{a,b) is performed within the algorithm to reduce the iines of

computer code required.)

Invoke Algorithm: Expose the (possibly transformed) data to the

algorithm to obtain parameter estimates or estimated density
values. The standard approach is to then obtain density

estimates evaluated at N or 100 equally spaced values between

XMIN and XMAX.

Compute Density Functionals: Two versions of each routine exist, one
applied to data with unknown distriburion and one applied to
data with a specified nuli distribution. For data with unknown
distributions, estimates of the mean, variance, and mode are

obtained by numerical integration and grid search techniques
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performed on the estimated dens ty. For a specified null
distribution, estimates of integrated squared error, mean

squared error, and maximum absolute deviation are obtained in a

'similar fashion. The options allowed for null distributions
include normal, gamma, and a mixture of two normal densities

since these are the cases considered in Chapter 6.

Plot Density Estimates: For unknown parent distributions, a printer

plot is obtained displaying equally spaced X values, estimated
density values, and the corresponding shape of the estimated
density. For specified null distributions, an overlay plot is

obtained with an additional listing of the null density vaiues.

Examples of these plots will appear in Chapter 6.

The options 10PTk usually involve choices of smoothing parameter

orders or null density values. They may also decide the number of

estimates is automatic, but the procedures may be modified by the user

LR

T ’ l different estimates to be obtained. Output of plots and parameter
' to control output.

For the NNDEN procedure, if one wishes to obtain density
estimates at m points, roughly lmn+knté computations will be performed

for a data set of size n and smoothing paramater k=k(n). The most

' j? involved step is finding the smallest radius r such that a sphere with

radius r centered at the evalusted data point contalns‘k-l additional

points, To perform this computation, (n-1) radii are computed and k

calls to routine MIN are made with Y{IMIN) being replaced by a large
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positive value each time. It is conceivable but unlikely that all
radii will be larger than this value, which is currently set at
7.0E+75. This is near the machine limit for single precision
constants and represents 7 followed by 75 zeros. Hence, it should be
suitable for most data sets. |In the univariate case, increasing the
value of k does not severely lengthen the procedure, but the
multivariate analog can be unduly lengthened by large choices of k due
to the involved computations for the volume of a hypersphere.

The algorithms employed for the KTDEN and TKDEN procedures are
perhaps the easiest to program. The most difficult step is generating
a system of orthogonal functions. Since KTDEN and TKDEN compute
moment estimators based on orthogonal systems of with pleasing forms,
the algorithms for generating density estimates are easily programmed.
The trigonometric polynomials or complex exponentials may be
programmed directly into the averaging routine without problems of
generating coefficients as is the case if Legendre [-1,1] polynomials
had been used. The data must be standardized to (0,1), but this is
easily implemented directly into the algorithms using the
transformation (Y (1)-A)/(B-A) where A=min(X) and B=max(X) and Y is the
vector of X values described above. Estimates are then computed using
a truncated ojder MN=m(n), with the maximum order currently set at 10.
The vector THETA of moment coeficients computed for the orthogonal
expansion need only be computed once up to the maximum order by virtue
of the orthogonality property. Estimates of varying orders may then

be obtained by simply calling for the coefficients needed. The

routine TKDEN computes a best order using the MISE criterion, while
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KTDEN merely displays plots for user specified orders.

The routine KRDEN merely generates the input parameters for the
IMSL routine NDKER which is documented in the IMSL Library, Volume 2
{1980) . Various values of H=h(n) may be employed to obtain different
shapes for the estimated density. The kernel employed is the normal
kernel programmed in the function subprogram XNKER.

The routines MIDEN and CMPDEN are the most complicated routines
in that a variety of regression subprograms must be employed to
generate the parameters of interest. MIDEN uses a subprogram called
LEGP to generate the matrix COF of Legendre polynomial coefficients.
CMPDEN has the advantage shared by KTDEN and TKDEN of employing the
orthogona! functions directly in the algorithm. The difference
between these techniques and the above orthogona! expansion techniques
is that a covariance matrix COV (PHI in CMPDEN) must be computed and
suppiied to a least squares algorithm to obtain least squares
parameter estimates for the truncated orthogonal expansion. A SWEEP
operator is employed in the sequential regression routine SEQREG to
obtain the coefficients in MIiDEN, while a complex SWEEP operator is
used in CSQREG for CMPDEN. The SWEEP operator has many computational
advantages. Kennedy and Gentle (1980) discuss some of its properties.

Both MIDEN and CMPDEN use the logarithm of an initial density
estimate from NNDEN to serve as a dependent variable in the regression

framework. A value of 8 is used to m(n) as a default, but was

"modified for some of the runs described in Chapter 6. For comparison

purposes, a version of CMPDEN was written that used NDKER in place of

NNDEN to obtain initial estimates, and while results were excelient
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for the special case considered, some reasons will be given in Chapter
6 why this practice is not recommended. Note that the maximum order
of expansion is set at 10 for both procedures and that orthogonality
with respect to the initial estimate has not been induced. This means
that addition of terms in the expansion will change all of the
previously computed coefficients. Consequently, one may wish to
modify this procedure accordingly, but one will note in the next
chapter that non-orthogonality does not pose a serious problem.

In programming the complex regression technique for CMPDEN,
several early failures emphasize the importance of taking care when
dealing with complex values. Although the final density estimate will
be real if one employs conjugate pairs in the expansion, the erroneous
deletion of the imaginary part of the estimated coefficients
invalidates the obtained estimate. One should avoid the suppression
of imaginary terms to obtain real valued estimates until the procedure
has been thoroughly tested. Examinations of the results of Chapter 6
reveal that the technique for obtaining estimates in both TKDEN and
CMPDEN produces complex valued coefficients. When applied properly in
conjugate pairs, the imaginary terms always vanish.

The problem of order determination has been considered in both
TKDEN and CMPDEN. As mentioned, the MISE criterion is used to obtain
a3 "best" order for the expansion in TKDEN. The AIC criterion is
computed in CMPDEN to diagnose a best order, but in practice this
criterion does not seem to perform as well as the MISE criterion.

A parametric version of MIDEN called NPDEN was created

specifically to handle least squares estimation of the parameters in
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the canonical exponential model representation of gamma and normal
densities. The independent variables are log x, x, and x? in the
expansion and the coefficients are computed by inserting the
appropriate variables into the regression model.

The utility of the minimum information regression approach is
illustrated by the two step FORTRAN-SAS program listed in Appendix
A.3. A FORTRAN PROGRAM uses LEGP to generate independent variables

and NNDEN to generate the dependent variable to be used in the SAS

procedure GLM. Predicted values are written into a data set called
TWO0, and in a DATA step the exponent of the predicted values is

obtained and submitted to the procedure PLOT where the estimated

density is then plotted against the original X value. This two step
procedure exemplifies the ease in adapting the minimum information
regression approach to existing regression software. More difficulty
may be encountered in the use of complex exponentials because complex
regression routines are not to be found in the major statistical
packages.

| Appendix C contains some useful subprograms accessed by the above
routines. Appendix D contains several of the plotting subprograms

employed to obtain printer plots of the estimated densities. PLOTXY

generates L5 equally spaced X values and generates the corresponding Y

values by linear interpolation. Then a plot of Y as a function of X

is produced with the values of X and Y printed for each plotted point.

b

}

Corresponding to this routine is PLTXYZ which produées an overlay plot
of Y and Z as functions of X. The routine PPLOT produces a more

appealing plot but presents oniy a scale of X and Y values. PPLOT is
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recommended for cscatter plots as it does not induce linearity by
interpolating values as does PLOTXY. For more elaborate plotting
using the Versatec plotting software, the subprogram GPLOT of the
TIMESBOARD Library (Newton, 1279) is a flexible multiple purpose
routine for obtaining high resolution plots. SAS/GRAPH (1981) also
contains many useful plotting procedures. A version of NPDEN accesses
GPLOT to obtain plots on the Versatec Electrostatic Piotter. Some of
the three dimensional plotting procedures of SAS/GRAPH will be

mentioned in the next section.

5.4 The BISAM Bivariate Data Modeling Program

The program BISAM is a general purpose bivariate data modeling
program designed to provide a variety of univariate and bivariate
descriptive statistics and graphical output. The core of BISAM is the
routine CMPINF (CoMPlex regression using INFormation functionals)
which serves as a generalization to CMPDEN for the bivariate case.
Within CMPINF the rank transformed data is exposed to a bivariate
version of NNDEN with computations proceeding as in CMPDEN. A modular
arithmetic scheme is devised to imbed the two-dimensional subscripting
of coefficients into a one dimensional indexing scheme. A -maximum
order of 7 is specified and a 49 by 49 covariance matrix (omitting the
constant term) is then supplied to CSQREG described above. Currently,
orders 8, 24, and 48 are automatically supplied with the user having
the option to override these values with user-supplied even orders (to

insure that the estimated dependence density is real). A listing of
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the main body of BISAM along with the major subprograms employed may
be found in Appendix B. The minor and peripheral subprograms employed
may be found in appendices C and D.

The main calling program of BISAM reads the bivariate data set
with the variables read in one at a time as univariate data sets. The

first card of a data set should contain a descriptive title describing

the data set.

points N and the format of the input variables. The format that reads
the second card is given by (15,4X,5A4) . Coded in the appropriate
format, the N data points should then follow. When BISAM finishes
reading the two data sets, it immediately checks to see if the two
>sample sizes agree. |If they do not, the program terminates. Before
reading the two data sets, however, the user must specify several
options to be employed in the analysis. Hence, the first data card

wil) be an option card with the following input options in (915)

format:

NTAPE -

MORD -

[

1DQX, 10QY

149

The second card should contain the number of data

tape where data set resides

maximum autoregressive order to be used for

univariate density estimation (<6)

null distributions for autoregressive smoothing:

] = Normal 4 = Double Exponential
2 = Exponential 5 = Uniform reciprocal
3 = Logistic 6 = Cauchy

- - <

L“—




IPLT

IPLT2

1DST

KDEL

A value of 1 is recommended. For a more complete
listing and description, see Parzen and Anderson

(1980) .

Scatter plot options:
0 = no scatter plots
1 = scatter plot of data
2 = scatter plot of rank transformed data

3 = both scatter plots

Univariate density plotting options:
0 = no quantile box plots

| = produce quantile box plots

Univariate descriptive statistics:

0 = no descriptive statistics displayed

150

1 = descriptive statistics computed and displayed

for each variable

Maximum number of extréme points to exclude from
analysis.

Extreme points are determined by distance from the
median, and if X and Y extreme points correspond,
they count as two points although only one will be

excluded from the analysis. Hence, KDEL usually

exceeds the actual number of points so deleted.
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These options illustrate the variety of output available from
BISAM. The univariate descriptive statistics, plots, and
autoregressive density estimates are obtained by employing some
modified routines from ONESAM (Parzen and Anderson, 1980). The
routine PPLOT describe: in the last section is used to obtain the
scatter plots, while PLOTXY is used to plot the univariate
density-quantile functions.

Before calling CMPINF, several routines are accessed that provide
some of the standard correlation statistics discussed in section 6.3.
CMPINF then uses the various estimates of the dependence density to
obtain entropy measures of association. These are displayed along
with the standard correlation statistics at the end of the output.
intrmediate output consists of univariate descriptive statistics and
piots (if requested) and coefficients for the expansion of the
logarithm of the dependence density. An integrating factor is also
displayed providing a diagnostic as to the legitimacy of the estimated
deﬁendence density. Sample output from BISAM will be presented in the
next chapter.

The current version of BISAM writes the values of an estimated
dependence density and bivariate density~quantile function to a
temporary disc file to be accessed by a SAS/GRAPH procedure. PROC G3D
and PROC GCONTOUR are then employed to produce three dimensional plots
and contour piots of the appropriate function. Output from these
procedures appear in the next chapter. The FORTRAN routine cpLOT
written by Phil Spector provides a contour printer plot. Output from

this routine appears following the parameter estimates for each order

5
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of approximation. The use of CPLOT has currently been suppressed
because of the availability of SAS/GRAPH.

5.5 A Note on Computer Facilities

The programs mentioned were developed and run on an Amdahl 470
V/6 or Amdahl L70 V/78 operated by the Data Processing Center at Texas
A and M University. The operating system employed is MVS/JES3
allowing the joint operation of both Amdahls as a single system. The
WYLBUR text manipulation system was used to type, edit, and run the
programs from a CRT terminal.

The program BISAM is executed using a one step system procedure
FORTX that compiles, loads, and executes a FORTRAN program. Since
BISAM has been in the developmental stage, a compiled version has not
been created so run times refiect the more inefficient procedure
employed. A typical run of BISAM for a bivariate data set of size 100
requesting all output will use about 50 CPU seconds and will entail
the reading of 2398 card images. Naturally, different data sets of
the same size may have vastly different characteristics (such as the
number of tied observations, correlation, etc.) so that the above
represents only an approximation. Furthermore, the above results are
by no means typical for all computers and are stated here only as a

rough guide.

»
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6. EXAMPLES AND APPLICATIONS

6.1 Introduction

Testing a new statistical technique entails two stages of

verification:

1) Check the techniques using data from known parent distributions.

2) Expose the techniques to 'real data" and compare and contrast the

results to those obtained using other techniques.

Poor results at stage (1) should cause one to discard a trial

" methodology without bothering to continue to stage (2), although valid

exceptions to this practice may occur. Often poor results from the
first stage suggest modifications to improve a procedure so that it
need not be completely discarded. The second stage shouid be
emphasized, however, as it simulates an environment in which a
technique wil) actually be used, One need not confirm the analysis of
others. In fact, if the new technique is more sensitive than existing
ones, it may suggest additional interpretations of experimental
results that are more appealing than those previously obtained. In
the area of data analysis, one is especially interested in obtaining
as much insight as possible about the nature of a data set. Hence, a
technique offering extended diagnostics is especially welcome. One

must be careful, however, to avoid being overwhelmed by an abundance
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of diagnostics that may be performing similar tasks. Each
statistician must choose those techniques which he feels are best
suited for data analysis, and if additional procedures are warranted,
they may be applied as needed. For example, if a statistician prefers
to use two density estimation techniques to get an idea of the
distribution of a data set, and both techniques give conflicting
results, a third technique may be employed in an attempt to verify or
contradict the results already obtained. Consequently, one may prefer
to withhold sophisticated and expensive procedures unless the easier,
less expensive methods fail to adequately deal with the problem at
hand. Many statisticians are content to use a histogram to diagnose
symmetry when the inference tool to be employed is fairly robust to
slight deviations from symmetry, but rarely would a histogram be
adequate to confirm rigid distributional requirements.

In this chapter, some of the procedures deveioped in previous
chapters will be exposed to simulated and real data sets. At stage
one, techniques with subjective smoothing requirements are often
easily made to conform to the simulated shape or value. it is at
stage two that the weaknesses of the subjective factors involved are

exposed. Interpretations will be offered for conflicting results.

6.2 Univariate Examples

To examine the univariate density technique of Chapter 3, we

consider three data sets. These are given by

—




A) 100 Gamma (10,1) r.v.'s

B) 50 N(0,1) r.v.'s mixed with 50 N(3,.25) r.v.'s

C) 63 observations on snowfall in Buffalo, New York,

from 1910 to 1972.

Listings of these data sets may be found in Tables 5 through 7.
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Taplie 5. 100 Observations
L.24783 7.13944
5.04321 7.15666
5.24307 7.21348
5.k2475 7.27734
5.44763 7.32370
5.53802 7.39561
5.59490 7.47524
5.67504 7.50638
6.13585 7.54331
6.20833 7.83998
6.21723 7.84698
6.37002 7.94389
6.38983 8.03307
6.4681 8.03327
6.50198 8.10931
6.52324 8.12584
6.57701 8.19711
6.61291 8.31321
6.75889 8.39989
7.01929 8.40721

.5L4367
.61258
62224
.63897
.77373
.87619
.90276
.06354
.09246
<2359k
.25439
.37018
.38267
.49000
.51031
.57556
.63029

0 \D D \O \D \D\D\D\D\O 0000 00 0003 000

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
11.
1.
1.
11.
11,
1.
1.
il.
11.
12.

02394
08187
31604
42786
54578
56661
57409
67747
90295
9040k
00u85
13315
13889
28637
31890
38006
L7916
61629
69777
02569

from a Gamma (10,1) Distribution

12.09786
12.12808
12.30663
12.41536
12.53470
12.81958
12.88938
12.96910
13.02124
13.75874
13.87460
13.95213
14.08677
14.19301
14.19326
15.87417
16.10650
18.13609
18.79675
19.88026

Tables 8 through 10 give selected output from the SAS procedure

UNIVARIATE for the data sets.

Also, to illustrate the utility of the

parametric application of minimum information density estimation, we
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Table 6. Sample from the Normal Mixture .5 N(0,1) + .5 N(3,.25)
-2.46836 -0.07938 0.93945 2.58292 3.07817
-1.76497 -0.07224 1.04555 2.61084 3.08599
-1.54261 -0.03350 1.15230 2.65899 3.08894
-1.39970 -0.01924 1.15795 2.66611 3.18530
-1.18157 0.02757 1.27020 2.6667 3.19295
-0.92799 0.03663 1.32825 2.69727 3.21383
-0.78408 0.05647 1.35215 2.71167 3.22806
-0.78233 0.08547 1.51836 2.73020 3.23082
-0.72175 0.09712 1.86996 2.76127 3.27329
-0.71528 0.k4OOLS5 1.91409 2.83441 3.28711
-0.69271 0.54350 1.99246 2.83984 3.34942
-0.63495 0.57335 2.01725 2.84271 3.43836
-0.62522 0.57826 2.17318 2.84482 3.49594
-0.58790 0.64629 2.17619 2.86786 3.49905
-0.42311 0.68756 2.25658 2.92654 3.52823
-0.41908 0.70090 2.28519 2.95894 3.68402
-0.39825 0.79734 2.39207 3.02427 3.70910
~0.22372 0.82677 2.42322 3.03565 3.74198
-0.19536 0.83868 2.k3118 3.05925 4.02736
-0.18169 0.90L461 2.L7505 3.07473 L.17188

will consider a set of 100 simulated N(0,1) random variables and
compare the least squares estimates to the usual maximum likelihood or
UMVU estimates of the parameters. The normal data set is not exposed
to the other procedures because they all seem to perform well for
smooth, symmetric densities. Data sets A and B will seek to test the
techniques for sensitivity to skewness or bimodality, while data set C
is included because it has been analyzed in a variety of densijty
estimation references (see, e.g., Parzen, 1979, or Tapia and Thompson,
1978) .

The popularity of the histogram and the fact that the bin width
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; Table 7. Yearly Snowfall in Buffalo, New York, 1910-1972

l

| 25.0 58.0 77.8 85.5 10L4.5

i 39.8 60.3 78.1 87.14 105.2
39.9 63.6 78.4 88.7 110.0
Lo.1 65.4 79.0 89.6 110.5
L6.7 66.1 79.3 89.8 110.5
49.1 69.3 79.6 89.9 113.7
Lg.6 70.9 80.7 90.9 174.5
51.1 71.4 82.4 97.0 115.6
51.6 71.5 82.4 98.3 120.5
53.5 71.8 83.0 10].4 120.7
54.7 72.9 83.6 102.4 124.7
55.5 Th.b 83.6 103.9 126.4
58.0 77.8 85.5

]

1 problem is well documented make its analysis here unnecessary. For

illustrative purposes, we include Figure 6 showing the output of PROC

CHART of SAS for the Buffalo snowfall data.
Using the FORTRAN routines documented in the last Chapter, we

obtain density estimates to be labeled as follows:

FNN - Nearest Neighbor density estimate

FKR - Kernel estimate

FKT - Kronmal-Tartar trigonometric series estimate

FTK - Tartar-Kronmal complex Fourier series estimate

FMI - minimum information estimate using Legoﬁdre
[-1,1] polynomials

FMC - minimum information estimate using complex

Fourier series
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Table 8. Selected Qutput from SAS PROC UN!VARIATE
for Data Set A
MOMENTS
N 100 SUM WGTS 100
MEAN 9.6L664 SUM 964 .664
STD DEV 3.06639 VAR ANCE 9.40273
SKEWNESS  0.904072 KURTOSIS 1.05021
uss 10236.6 css 930.87
cv 31.787 STD MEAN  0.306639
T:MEAN=O  31.4593 PROB>|T| 0.0001
QUANTILES
1003 MAX  19.8802 99% 19.8694
75% Q3 11.3648 95% 15.7901
25% Q1 7.34168 10% 6.20922
0% MIN  4.24783 5% 5.45215
1% 4.25578
RANGE 15.6324
Q2-Qi 4.0231
MODE 4,24783

FTK will only be applied to data set C to illustrate the MISE order
determining criterion. Examples of the application of autoregressive
density estimation to Buffalo snowfall may be found in Parzen (1979b)
along with other examples, and hence will not be included here. Tapia
and Thompson (1978) also give a variety of examples for various
density estimation routines. Tartar and Kronmal (1976) illustrate the
use of FTK applied to relatively smooth data sets. We include the
above estimates for comparison and illustrative purposes.

For data set A, Figures 7 through 11 contain the "best' estimates

obtained from a procedure overlayed with the true population density

i
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Table 9. Selected Output from SAS PROC UNIVARIATE
for Data Set B

MOMENTS
N 100 SUM WGTS 100
MEAN 1.52001 SUM 152.001
STD DEV 1.62488 VARI ANCE 2.6L4023
SKEWNESS -0.359466 KURTOSIS  -1.07955
uss 492,427 css 261.383
cv 106.899 STD MEAN  0.162488
T:MEAN=O 9.35463 PROB>| T} 0.0001
QUANTILES
100% MAX  4,17188 99% L.17043
75% Q3 2.95084 95% 3.67623
50% MED  1.95327 903 3.34319
25% Q1 0.029835 10% -0.713023
0% MIN -2.46836 5% -1.16889
1% -2.46133
RANGE 6.64024
Q3-Q1 2.921
MODE -2.46836

used to generate the data. One notes that FNN has difficulty
smoothing out the mode of the density, but the value at the mode is
0.4 which is close to the true value 0.13. The densities FKR, FAMI,
and FMC all perform an adequate approximation to the parent
gamma (10,1) density. Coefficients for FKT for the three data sets are
displayed in Table 11. Table 12 contains the coefficients for FMI,
and Table 13 contains coefficients for FMC.

For data set B, some of the techniques have a little more

difficulty approximating the bimodal parent density. Figures 12
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Table 10. Selected OQutput from SAS PROC UNIVARIATE
for Data Set C

MOMENTS
N 63 SUM WGTS 63
MEAN 80.2952 SUM 5058.6
STD DEV 23.7198 VARIANCE 562.629
SKEWNESS -0.0186313 KURTOSIS -0.562101
uss k41065 (413 34883
cv 29.5407 STD MEAN 2.98842
T:MEAN=Q 26.8688 PROB>|T| 0.000)
QUANTILES
100% MAX 126.4 99% 126.4
75% Q3 98.3 95% 120.66
50% MED 79.6 90% 14,18
25% Q! 63.6 10% 49.3
0% MIN 25 5% 39.94
1% 25
RANGE 101.4
Q3-Q! 3k.7
MODE 82.4

through 17 contain plots for this data set. FNN once again seems to
fluctuate randomly about the modes but gives a good rough
approximation to the bimodal shape. FKR, FMI, and FMC once again seem
to provide the best results with some problem in estimating the true
value of the parent density at the modes, but diagnosing the bimodal
shape well. Figure 17 shows the exceptional ability when presented
with an above average initial density estimate in CMPDEN instead of
FNN, and the resulting value of FMC is extremely close to the true

values of the parent density. The only discrepancies occur in the
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Figure 6. Histogram of Buffalo Snowfall Data
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Figure 7. Nearest Neighbor Density Estimate for Gamma (10, 1) Data,

tail areas which is typical for the orthogonal expansion techniques.

For data set C, Figures 18 through 23 represent the different

shapes one may subjectively obtain from a density estimation

procedure.
depicts a unimodal shape. FTK i

coefficients listed in Table 14,

estimated p.d.f. were included to compare to the usual unbijased

s included in this analysis with

FNN seems to indicate a trimodal parent density.

For FKT and FTK, functionals of the
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figure 8. Kernel Density Estimate for Gamma(10,!) Data, h=1.0

estimates of location and scale. Table 15 contains selected
functionals of the estimated densities for the three data sets.
Recall from Table 10 (p. 160) the sample mean for Buffalo snowfall is
80.29 and the sample variance is 562.629. Typically, for different
shapes, an orthogonal .expansion estimate presents fairly stable

functional values for the mean and variance. FKT and FTK admit both

unimodal and trimodal shapes. Using the MISE criterion for FTK, a
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Figure 9. Trigonometric Series Density Estimate for
Gamma (10,1) Data, m=7

unimoda) shape is obtained with mean and varisnce 'close" to their
unbiased counterparts. An order 7 approximation for FKT is displayed
to illdstrate a trimodal shape, although a unimodal shape is obtained
for orders 1 through 4. Again, the mean and variance estimates are
similar to their unbiased counterparts.

FMI and FMC tend to provide differsnt shapes, and as exemplified

above, the compiex expansion tends to introduce multimodal estimates
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Figure 10. Minimum Information Series Estimate using Legendre
Polynomials for Gamma(10,1) Data, m=3 N
|
'

at lower orders than the polynomial expansions.

The order 6 estimate

for FMI depicts the transition from a unimodal to a trimodal shape.

The order 6 estimate for FMC aiready clearly indicates a trimodal

shape.

One might note that for the two objective criteria MISE and CAT,

a unimodal shape for Buffalo snowfail is indicated, although most

procedures will admit trimodal shapes.

(See Parzen, 1979, for
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Figure 11. Minimum information Series Estimate using Compiex
P
Exponentials for Gamma (10,1) Data, m=6

itlustration of CAT results). When the true p.dif. is known, as is
the case for data sets A and B, a procedure can usually be steered to
produce a desired shape. Consequently, a better test for a procedure
would be for stability or objectivity. The estimate FNN is fairly
stable for orders of 5 or more in terms of representing a fixed number
of modes although fluctuations in mode estimates occur. The

orthogonal expansion techniques tend to be unstevle, especially for
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Table 1. Trigonometric Series Coefficients
DATA SET A: ] COF DATA SET B: I o] 3
1 0.0530 1 -0.0752
2 -0.0234 2 -0.0235
3 -0.0317 3 -0.0289
L -0.01M L  -0.0595
5 -0.0123 5 0.0779
6 -0.0068 6 -0.0L56
7 -0.0044 7 0.0393
8 -0.0027 8 0.0123
8 -0.0021 9 -0.0222
10 -0.0015 10 -0.0071
DATA SET C: ! COF
1 -0.0021
2 -0.0057
3 -0.0002
L 0.0014
5 -0.0023
6 -0.0021
7 0.0032
8 0.0014
9 -0.0013
10 0.0006

large orders of approximation, but objective use of criterion
functions helps to overcome this problem. The MISE criterion of
Tartar and Kronmal (1970,1976) does not translate effectively to the
minimum information procedure, but one suspects a modification of
MISE, CAT, or AIC should better handle the problem. Further research
is warranted in this area. Consequently, we do not advocate as yet
the use of minimum information techniques over autoregressive

estihation with the CAT criterion or estimation using FTK with the

B
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Table 12. Coefficients for FMI Density Estimate

Data Set A: Order Loef Data Set B: Order Coef
1 -1.41 1 0.658
2 -0.990 2 -0.986
3 0.749 3 0.228
4 -0.746
Data Set C: 1 0.237 5 -0.977
2 -0.951 6 0.267
3 0.012 7 0.552
L 0.164 8 0.392
5 0.082
6 -0.227

MISE criterion. However, in the bivariate case, the minimum
information approach is easily extended and seems more appropriate
than existing procedures,; especially in terms of controlling the
amount of graphical displays necessary to arrive at an acceptable
estimate.

To illustrate the parametric application of the minimum
information approach to estimating varameters for normal and gamma
models, data set A is examined along with data set D consisting of a
random sample of 100 N(0,1) values. A parametric mode) for data set A
appears in Figure 2k. Note the least squares estimates are a=8.94 and

b=0.94 which correspond to an estimated gamma mean of 9.51 and an

S R M M hed b beem et b b b bt b

estimated gamma variance of 10.12, Data set D is listed in Table 16

E

with selected descriptive statistics from PROC UNIVARIATE of SAS
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Table 13. Coefficients for FMC Density Estimate
DATA SET A: IND  REAL (THETA) IMAG (THETA)
-1 -0.316603 0.596658
] -0.316603 -0.596659
-2 -0.070131 0.161096
2 -0.070130 -0.161097
-3 ~0.056627 0.069507
3 -0.056627 -C.069507
DATA SET B: IND  REAL (THETA) I MAG (THETA)
-1 -0.175565 ~0.197545
1 -0.175564 0.197546
-2 -0.204320 -0.293631
2 -0.204320 0.293632
-3 -0.114078 -0.043741
3 -0.114078 0.0437M
DATA SET C: IND  REAL (THETA) | MAG (THETA)
-1 -0.351673 -0.079655
1 -0.351673 0.079656
-2 -0.065335 -0.074402
2 -0.065334 0.074k02
-3 -0.117258 -0.186600
3 -0.117258 0. 186600

appearing in Table 17. Figure 25 shows the parametric representation

of the normal density with a least squares estimated mean of -0.10 and

variance of 1.25. These examples illustrate the parametric

applications of the minimum information procedures, suggesting

possible extensions to goodness-of-fit diagnostics.
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Figure 12. Nearest Neighbor Density Estimate for

A few comments are in order. Examination of the expansion

coefficients reveals a rather rapid decay, as expected, but higher

order coefficients usually remain large enough to induce a very wiggly

shape to the estimated density. Furthermore, expansions using complex

exponentials seem to require fewer terms than the polynomial or

trigonometric series

expansions.

This indicates that complex Fourier

series may converge more rapidiy than other series expansions, a
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Figure 13. Kernel Density Estimate for Normal Mixture Data, h=1.0

conjecture that seems to be supported by the literature. This
motivated using only complex expansions in the bivariate case,
although one may wish to consider other choices for the orthogonal
system of functions to use.

In this section we have presented several exampies of
nonparametric density estimation procedures. Essentially, we have let

the plots speak for themselves to illustrate obtainable shapes and the
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Figure 14. Trigonometric Series Density Estimate for
Normal Mixture Data, m=f

corresponding anomalies that are produced. The examination of the
univarijate ﬂlDEN and CMPDEN procedures illustrates the power of the
minimum information approach and justifies the examination of
bivariate extensions. Had CMPDEN performed poorly in the univariate
case, one would have little faith in the ability of its bivariate

counterpart. With this motivation, one may now examine the bivariate
extension of CMPOEN.
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Figure 20. Trigonometric Series Density Estimate for
Buffalo Snowfall Data, m=7
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Table 14, Coefficients for FTK Density Estimate

DATA SET C: IND REAL (THETA) LMAG (THETA)
-1 -0.2881 -0.0793
1 -0.2881 0.0793
-2 0.0698 -0.0014
2 0.0698 0.0014
-3 -0.10M -0.1915
3 -0.101 0.1915
-4 0.0732 0.0980
kL 0.0732 -0.0980
-5 0.0318 -0.0290
5 0.0318 0.0290
-6 -0.0218 -0.097k
6 -0.0218 0.0974
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Table 15. Selected Functionals of Estimated Densities

Estimate Mean Variance ISE MSE Max. Dev.
Data Set A:
True 10.00 10.00 - - -
FNN (k=15) 9.79 10.25 0.0024 0.0002 0.0352
FKT (m=7) 9.65 9.47 0.0019 0.0001 0.0332
FMI (m=3) 9.48 9.01 0.0025 0.0002 0.0185
Param. L.S. 9.51 10.12 0.0015 0.0001 0.0205
Data Set B:
True 1.50 2.88 - - -
FNN (k=15) 1.49 2.79 0.0055 0.0009 0.0781
FKR (h=0.4) 1.50 2.61 0.0077 0.0016 0.0805
FKT (m=6) 1.53 3.28 0.0023 0.0002 0.0343
FMi  (m=8) 1.31 2.79 0.0068 0.0018 0.055;
Data Set C:
FNN (k=10) 78.90 548.77 - - -
FKR (h=5.) 79.92 524.36 - - -
FKT (m=7) 80.33 548,67 - - -
FTK (m=1) 73.15 558.96 - - -
FMI  (m=6) 76.79 595.74 - - -
FMC (m=6) 79.03 532.6k - - -
Data Set D:
True 0.0 1.0 - - -
Param. L.S. -0.0022 1.0k 0.0001 0.0000 0.0066
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Table 16. 100 Observations from a Normal (0,1) Distribution
-2.h543 -0.9761 -0.2562 0.2586 0.8609
-1.9855 -0.9257 -0.2L54 0.3443 0.9585
-1.9848 -0.8681 -0.2044 0.3506 1.0888
-1.7842 -0.8600 -0.1885 0.3836 1.0903
-1.5225 -0.8447 -0.1862 0.3875 1.1161
-1.4707 -0.8020 -0.1796 0.4137 1.1342
-1.4021 -0.7875 -0.1696 0.4164 1.2297
-1.3537 -0.7511 -0.1534 0.4279 1.2326
-1.3480 -0.7226 -0.1420 0.4341 1.3730
-1.2972 -0.6578 -0.1235 0.4372 1.4012
-1.2791 -0.6520 -0.0955 0.447 1.4153
-1.2261 -0.5746 -0.0321 0.4938 1.4422
-1.2138 ~0.5337 0.0161 0.5047 1.4573
-1.2040 -0.5241 0.0852 0.5215 1.4895
-1.1369 -0.4537 0.1382 0.6104 1.5830
-1.0814 -0.4434 0.1409 0.6427 1.6L41
-1.0793 -0.4220 0.1521 0.6830 1.6826
-1.0661 -0.3949 0.1623 0.7354 1.7450
-1.0071 -0.3725 0.1697 0.7788 1.8024
-0.9990 -0.2596 0.2132 0.7833 2.3243

I
|
I




Table 17. Selected Output from SAS PROC UNIVARIATE
for Data Set D

N 100
MEAN -0.03496
STD DEV  0.996355
SKEWNESS 0.0461974
uss 98.4019
cv -2849.99
T:MEAN=O -0.350879

100% MAX 2.3243
75% Q3 0.634625
50% MED -0.1095
25% Q1 -0.834025

0% MIN  -2.4543

RANGE 4.7786
Q3-Q! 1.46865
MODE -2.4543

MOMENTS

QUANTILES

SUM WGTS
SUM

VARIANCE
KURTOS IS
CsS

STD MEAN
PROB>|T |

99%
95%
90%
10%
5%
%

100
-3.496
0.992724
-0.555495
98.2797
0.0996355
0.726425

2.31908
1.64104
1.41389
-1.29539
-1.51991
-2.:44961
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6.3 Bivariate Examples

To illustrate the use of the BISAM program that implements the
bivariate data modeling approach detailed in Chapter L4, we consider

three data sets. These are

A

E) 500 independent N(0,1) bivariate observations,
F) 100 bivariate standard normal! variables with a correlation
of 0.90

G) The coronary data of Scott, et al. (1978).
Selected output from BISAM for data sets E and F appears in Table 18.
List:ngs of the Coronary data appear in Tables 19 and 20, and selected
output from BISAM for this data appears in Tables 21 and 22.

For the normal data we shall merely exhibit the results and note
the similarities of the population quantities being estimated.
Figures 26 through 29 display contour and three dimensional plots from
SAS/GRAPH. Scatter plots have been omitted as have the univariate
autoregressive density plots which were normal in all cases. The
figures illustrate slight anomalies that may occur in the "off
diagonal" areas for a high degree of correlation. These are due in
part to the extrapolation probliem. Clearly few data points occur in
these tail areas to adequately estimate the bivariate density there.
For the most part, the bivariate estimates of the normal densities are
pleasing. One notes that the mode occuring at the point (-0.31,-0.14)

for data set E is a little unusual, but this seems to result from the

G D SN BN O W RN B bk b beed beeed  beed L
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Table 18. Summary of BISAM Qutput for Data Sets E and f
DATA SET E DATA SET
[ X Y X Y
Mean ~0.092 -0.085 -0.026 ~0.025
Median -0.131 -0.145 0.027 0.060
Trimean ~0.109 -0.111 -0.020 0.028
) Variance 0.973 0.954 1.120 1.078
St. Dev. 0.987 0.977 1.058 1.038
1Q Range 1.337 1.420 1.378 1.463
Pearson r -0.027 0.893
Spearman Rho -0.038 0.884
Kendall Tau -0.026 0.710
H(d-tilda) -0.292 -0.858
H (d8) -0.056 -0.351
H (d2k) -0.077 -0.462
H(dk8) -0.104 -2.621

simulation and not the modeling technique. The entropy estimates
exhibit the same type of instability discussed before indicating that
some correction factor should possibly be employed in their
computation. The r?sults for data set E with n=500 indicate that the
entropy statistics may be asymptotically biased. Otherwise, the
results for the normal case are satisfactory, leading one to consider
investigations with real data.

Scott, et al. (1978), consider two sets of data consisting of
measurements of plasma cholesterol (CHL) concentration and plasma
triglyceride (TRG) councentration in 371 males. The males were

clagssified into two groups, 320 falling into the category of

"diseased" amd 51 being classified as "normal'". These classifications
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Table 19. Listing of Coronary Data - Normal

PLASMA CHOLESTEROL - NO CORONARY ARTERY DISEASE

195. 237. 205. 201. 190. :80. 193. 170. 150. 200. 228. 169. 178.
251, 234, 222. 116. 157. 194, 130. 206. 158. 167. 217. 234. 190.
178. 265. 215, 265. 190. 156. 187. 149. 1h7. 155. 207. 238. 168.
210. 208. 160. 243. 209. 221, 178. 289. 201. 168. 162. 207.

PLASMA TRIGLYCERIDES - NO CORONARY ARTERY DISEASE

348, 17h. 158, 171. 85. 82. 210. 90. 167. 154, 119, 86. 166.
211, 143, 284, 87. 134, 121, 64. 99. 87. 177. V14, 116. 132.
157. 73. 98. 485. 108. 126. 109. 146. 65, 4B. 195. 172. 71,
91. 139. 116. 101, 97. 156. 116. 120. 72. 100. 227. 160.

were based on medical examination of the patients to ascertain the
presence of coronary artery disease. Using a Kolmogorov-Smirnov
goodness-of-fit test, a null hypothesis of normality is rejected for
all but the diseased class of triglyceride data. This motivated the
use of the kernel method of bivariate density estimation to assist in
the analysis of the data. A ltikelihood equation was then developed to
aid in patient classification and to estimate the risk of coronary
artery disease based on CHL and TRG measurements.

It was determined that the normal data exhibited a unimodal shape
with mode at (CHL,TRG) = (195,122). The diseased population was felt
to exhibit a bimodal zhzpe with one mode at M1 = (185,122) and the
second mode at M2 = (233,145). The univariate kernel estimates were
unimodal. Consequently, it was felt that some diseased patients were

virtually indistinguishable from normal patients based on CHL and TRG
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Table 20a. Listing of Coronary Data - Diseased

PLASMA CHOLESTEROL - DISEASE [N AT LEAST 1 OF 3 CORONARY ARTERIES

184, 263. 185. 271. 173. 230. 222. 215. 233. 212. 221. 239. 168.
231. 221, 131. 211, 232. 313. 240. 176. 210. 251. 175. 185, 184, g
198. 198. 208. 28k. 231. 171. 258. 164. 230. 197. 216. 230. 265.
! 197. 230. 233. 250. 243. 175. 200. 240. 185. 213. 180. 208. 386.
236. 230. 188. 200. 212. 193. 230. 169. 181. 189. 180. 297. 232.
150. 239. 178. 242. 323. 168. 197. L17. 172. 2k0. 191, 217. 208.
220. 19). 119. 171, 179. 208. 180. 254, 191. 176. 283. 253. 220.
268. 248. 2u45. 171, 239. 196. 247. 219. 159. 200. 233. 232. 189.
237. 319. 171. 19k, 244, 236. 260. 254, 250. 196. 298. 306. 175.
251, 255. 285. 184, 228. 171. 229. 195, 214. 221. 204. 276. 165. .
211. 264, 245. 227. 197. 196. 193. 211, 185. 157. 224. 209. 223. A
278. 251. 140. 197. 172. 174. 192. 221. 283. 178. 185. 181. 191.

185. 206. 210. 226. 219. 215, 228. 245. 186. 2h2. 201. 23y. 179.

218. 279. 23h. 26L. 237. 162. 2k5. 191. 207. 248. 139. 246. 247.

193. 332. 194. 195, 243. 271. 197. 2k2. 175. 138. 2b4. 206. 191.°
223. 172. 190. k4. 194. 105. 201. 193. 262. 2}}. 178. 331. 235.

267. 227. 243. 261, 185. 171. 222. 231. 258. 211. 249. 209. 177.

165. 299. 274. 219. 233. 220. 348. 194. 230. 250. 173. 260. 258.

131. 168. 208. 287. 308. 227. 168. 178. 164. 151. 165. 249. 258.

194, 140. 187. 171. 22). 294, 167. 208. 208. 185. 159. 222. 266. :
217. 249. 218. 245, 242. 262. 169. 204. 184. 206. 198. 2u42. 189. 5
260. 199. 207. 206. 210. 229. 232. 267. 228. 187. 30L. 140. 209. *
198. 270. 188. 160. 218. 257. 259. 139. 213. 178. 172. 198. 222. %
238. 273. 131. 233. 269. 170. 149. 194, 1k42. 218. 194. 252. 184, %

——

gt

s

- Mg

203. 239. 232. 225. 280. 185. 163. 216.

concentrations, but that a significant number corresponding to

contours in the region of M2 could be classified as diseased. An

interpretation was then given to explain the effect of triglyceride
concentrations in ascertsining the presence of coronary artery

disease, "over and above that implied by the co-existing levels of

e ammp SN GEE ) NS WP =g =B oD

plasma cholesterol alone." In their analysis, Scott, et al., chose to ¥ }

delete one outlier from each of the TRG data sets based on inormality
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1h5. 142,
145, 432.
149. 333.
158. 146.
152. 162.
426. 154.
75. 115.
154, 312.
400. L18.
117. 271.
91. 259.
152. 152,
130. 133.
123. 317.
290. 250.
154, 207.
199. 202.
151. 93.
61. 9.
196. 99.
227. 200.
98. 153.
105. 110.
156. 146.
170. 38.

Table 20b. Listing of Coronary Data - Diseased

115.
137.
112.
142,
220.
100.
84.
120.
78.
930.
LL6.
164 .
217.
135.
116.
120.
126.
323.
77.
390.
207.
150.
148.
96.
161.

128.
124,
245,
18.

101.
144,
170.

108.

183.
255.
146.
101.

72.

269.

363.
125.
174.

163.

209.
135.
322.
107.
125.
141,
240.

56.
258.
181.

50.
130.
195.
126.

92.
108.
142.
265.
106.
267.

88.
112.
125.
100.
101.
260.
156.
180.

95.

96.

84.
218.

304,
256.
165.
489.
188.
208.
149,
41,
148,
120.
103.
117.
325,

91.

89.

36.

90.
153.
172.
135.
169.
296.
hoa.
284,
110.

151,
221,
210.

680
158.
291.
102,
137.
144,
242,
170.
101.
130.
166.
347.

92.
229.
154,
126.

80.
158.
583.
240.
237.
156.

168.
166.

76.
196.
112,
198.
153,
L5k,
170.
137.
122,
179.
257.

90.
179.
259.
161.
400,
101,
201.

84.
192.

5k
272.
101,

3540.

92.
L92.
116.

104.

140,
136.
125.

161,
223.
120.
199.
273.
316.
246,

88.
328.

137.

80.
148.
182.
149.
261.
1.

171.
189.
87.
130.
84.
LT N
FAYR
152,
130.
268,
59.
109.
8s5.
2.
91i.
304.
306.
160,
73.
231,
148.
115.
125.
567.

140.
148.
112.

80.
202.
115.
W24,
127.
143,
150.
124,
168.
297.
173.
177.

84,
256.
300.
155.

82.
124,
149.
146.
278.

97.
256.

90.
220.
232.
327.
222.
131.
Lo8.
199.

82.
119.
137.

87.
201.
134.

89.
127.
146.
108.
248,
102.
103.
233.

PLASMA TRIGLYCERIDES - DISEASE IN AT LEAST 1 OF 3 CORONARY ARTERIES

131.
222.
156.
162.
328.
262.
172.
135.
153.
121,

80.
233.
126,

91.
149.
14,
133.
151,
145,
16k,
176.
376.
348.
18%.

considerations (number of standard deviations from the mean). The

corresponding CHL values then must be eliminated in the bivariate

analysis.

For this data set (data ser H), a BISAM analysis was carried out

for the normal and diseased groups.

Scatter plots for these two

groups appear in Figures 30 and 31, and several density estimates were

computed to obtain the shapes depicted in Figures 32 through 36. The
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Table 21. Summary of BISAM Output for Coronary Data -~ Normal

Coefficients for Bivariate Dependence Density (1 outlier omitted):

NU1_NU2  REAL (COF) |MAG (COF)
o -i -0.1352 -0.0478
0 ] -0.1352 0.0478
-1 0 -0.1061 0.0630
1 0 -0.1061 -0.0630
-1 1 0.0315 -0.0563
1 -1 0.0315 0.0563
-1 -1 -0.1071 0.0676
1 ) -0.1071 -0.0676

Integrating Factor = 1.015

CHL Mean 195. 14 TRG Mean 140.33
CHL Median 195.14 TRG Median 120.00
CHL Variance 1308.38 TRG Variance 5504.91
CHL AR Order 0 TRG AR Order 2

The following are computed with one outlier omitted:
Pearson r 0.188 H(d-tilda) -0.026
Spearman Rho 0.243 H (dB) -0.099
Kendal! Tau-A 0.166 H(d24) -0.116
Kendall Tau-B 0.167 H (d48) -0.681

univariate density-quantile plots appear in Figures 37 through LO.

One rejects normality for both TRG data sets. For thi# analysis, both
normal and diseased groups are classified as bimodal with modes for
the normal group at (190,97) and (206,146), and modes for the diseased
group at (187,120) and (221,145). The two modes for the diseased
group support the results of Scott, et al., but the norma) results are
contradictory. This analysis was performed for the compliete data,
with bimodal TRG densities.

Upon eliminating the outliers suggested above, it was discovered

w e e - ——
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CHL Variance 1850.04

CHL AR Order 0

The following are computed with
Pearson r 0.210

Spearman Rho 0.270

Kendall Tau-A 0.183

Kendall Tau-B 0.184

NUT NU2 _ REAL (COF) IMAG{(COF)
0 -1 -0.0489 0.0546
0 I -0.0489 -0.0546
-1 0 -0.0333 0.0221
1 0 -0.0333 -0.0221
-1 1 0.102k -0.0579
1= 0.1024 0.0579
-1 -1 -0.0148 0.0472
j 1 -0.0148 -0.0472
0 -2 0.04L1  -0.0498
0 2 0.04l 0.0L498
-2 0 -0.0198 -0.0026
2 0 -0.0198 0.0026
-1 2 0.0831 -0.0029
T -2 0.0831 0.0029
-2 1 -0.00k9 0.0821
2 -1 -0.0049 -0.0821
-2 -1 -0.0377 -0.0252
2 1 -0.0377 0.0252
-1 -2 -0.0411 -~0.0269
1 2 -0.04N 0.0269
~2 2 0.0560 -0.0118
2 -2 0.0560 0.0118
-2 =2 0.0626 0.0230
2 2 0.0626 ~0.0230
integrating Factor = 1,009
CHL Mean 216.19 TRG Mean
CHL Median 212.50

Table 22. Summary of BISAM Output for Coronary Data - Diseased

179.35

TRG Median 150.00

TRG Variance 10372.6

TRG AR Order 1
one outlier omitted:

H{d-tiida) -0.300
H (d8) -0.078
H (d24) -0.105
K (dL48) ~0.158

Coefficients for Bivariate Dependence Density (1 outlier omitted):

that the results for the diseased group were fairly stable, but for
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Figure 27. Three Dimensional Plot of Density-Quantile for
Normal Data with Rho=0, Order=8
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Figure 29. Three Dimensional Plot of Density-Quantite for
rmal Data with Rho=0.9, Order=8
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the normal group, a unimodal! shape was obtained corresponding to that

of Scott,

(195,122)
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et al., For this case, 2 mode for the normal group occurs at

and two modes for the diseased group occur at (188,120) and
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(221,145) . These results seem to confirm those of Scott, et al., I
Elimination of the two outliers served to produce unimoda! univariate
densities in all cases. Figures 41 through 45 illustrate the B
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Figure 37. Univariate Density-Quantile Plot for
Variable CHL, Normal

bivariate shapes obtained when one outlier is removed.

This analysis illustrates some important points.

univariate densities will usually produce multimodal bivariate

Bimodal

densities, but it is possible for the dependence structure for two

unimodal univariate densities to induce multimodal bivariate
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Figure 38. Univariate Density-Quantile Plot for

Variable TRG, Normal

densities.

data set.
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The ability of the kernel! method and the minimum
information method to discover these modes is cruci;l to a study
designed to determine if more than one population is represented by a
furthermore, this analysis illustrates the importance of

univariate density estimation in such "bump-hunting' problems.
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Consequentiy, the upivariate density-quantile functions have a

a
208
1
J fQ J
0.0099 0. 0008 .
0. 0217 0.0014 .
0.0%3% O 0024 .
0.07152 0.0034 .
Q.0870 O 0048 .
O 1188 O 0087 .
0 1406 0 0068 .
0.1823 Q 0078 .
O 1842 0 0088 .
0.2089 Q.0096 .
0 2277 0.0103 .
0.249% 0.0106 .
Q.2712 0.0108 .
0 2931 0.0107 -
0. 3149 0 0108 .
0.3366 0.0101 .
0 . 3%84 0.0096 . 4
0.3802 0.009% .
0.4020 0.0086 .
0 42238 0.0082 .
O 4485 0 0079 .
0.4672 0.0077 .
0.4891 0.0077 .
0.51Cc9 0.0079 .
0 5327 0.0081 .
0.5548 0.008S .
0.5762 0.0089 .
0.5980 Q.0093 .
0.6198 0.0097 .
0 €416 Q. 0099 .
0.6634 0.0100 .
0.68%1 0.0099 .
Q.7069 0.0096 .
0.72087 0.0091 .
0 7508 ©0.008S .
0.7723 0 00717 .
0.7941 0.0069 .
Q 81se 0. 0060 .
0.837¢ 0.00%51 . -
0.8594 0.0043 .
0.8812 0 0036 .
0 9030 0.0029 . R
0.9248 0.0023 .
0.946% 0.0017 .
0. 9683 Q.0012 .
Q.9901 0 0004 . ]
"""""""""" * . PR S
0.0004
Figure 39. Univariate Density-Quantiie Plot for
Variable CHL, Diseased ’
L}
the correlation is small, the univariate densities may dominate the ’ '
shaping of the bivariate densities. For the coronary data, the
correlations range from 0.2 to 0.3 indicating small but statistically l
significant correlation between the variables CHL and TRG. '




univariate analysis is crucial to bivariate data modeling, a fact that
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[}
l pronounced effect on the bivariate density-quantile, especially for
' the normal group. When the outlier is omitted from the normai group,
the shape of the TRG density changes from bimodal to unimodal with a
' corresponding change in the bivariate density-quantile, Clearly a
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may he hidden by the kernel approach.

These examples serve to illustrate the competitiveness of minimum
information bivariate density estimation and point out some
fundamental characteristics of a bivariate data modeling approach.

For any exploratory analysis one is especially concerned with
obtaining all of the possible shapes that can effectively model a data
set. The minimum information approach provides such a multitude of
shapes with a minimum amount of expurgatorial effort that occurs in
such «.proaches as the kernel method. However, the approach would be
aided by an objective procedure to choose among the orders of
approximation. This is left as a subject for further study with the

failures noted herein serving as a catapult for future research.
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7. CONCLUSION

7.1 Concluding Remarks

In the dissertation we have shown the utility of the function
approximation approach to density estimation. The representation of
an unknown density as a truncated parametric model that is
nonparametric in its assumptions for the data provides a useful tool
for an exploratory analysis of a data set. The convergence of
infinite series representations is usually very rapid so that
truncated series provide good approximations for functions of
interest. The statistical problem involves estimating the parameters
of the expansion in a stochastic setting. Unfortunately, an exact
stochastic model to aid in estimation is not always available, and
asymptotic results may only be meaningful for very large samples.
Consequently, the properties of estimates are difficult to investigate
in such a general setting and hence restrict the applicability of such
approaches to inferential statistics. Simulation studies and
experience in the application of expansion techniques, however,
support their use in the absence of exact theory.

Heuristic motivations are given by considering finite exponential
models and their relationship to Fourier series in Hilbert space.
Analogies to classical regress:ion and time series analysis also
provide heuristic support to this approach. The development of
information functionals then serve to promote the regression analogy

by suggesting least squares estimation of parameters. (nformation
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theory plays a dual role in providing criterion functionals and
‘ parameters that represent important population characteristics. One
‘ suspects that the observation of Berkson (1980) concerning the
selection of estimation criteria have a more general interpretation in
terms of information functionals. The value of information theory as
apclied to statistics has yet to be fully realized, but works such as
this one should motivate furthe. research into the area.

in this work we have presented some fundamental mathematical and

statistical concepts useful to the stuay of bivariate data modeling. {
The analysis of a variety of nonparametric density estimation

procedures suggested problems to be overcome and motivated the

development of a new technique that competes with existing procedures

and extends easily to the bivariate case. Classical inference

procedures for testing for independence were explored with suggestions

made for the development of entropy statistics that measure

association hetween two random variables. An information parameter

was derived that represented a measure of association, but

satisfactory estimators of the parameter were not obtained. A

bivariate data modeling approach was investigated and promising

rasuits obtained for the problem of density estimation and

“"pump-hunting! in a multivariate setting. The development of
univariate and bivariate density estimation programs provided

interesting comparisons and permitted the exploratory analysis of a

variety of data sets. The program BISAM permits application of the ' R |

data modeling results obtained and provides a useful computing tool to

the applied statistician. The BISAM program forms a computing triad
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with ONESAM (Parzen and Anderson, 1980) and TWOSAM (Prihoda, 1981)
that may serve as a valuable tool to the data analyst. The
nonparametric and robust procedures availab!. from these programs are
difficult to obtain from one source and overcome the weaknesses of
most statistical packages in the areas of data analysis and density
estimation. This contribution should motivate the application of
nonparametric procedures to statistical problems and should support

the continuing research into multivariate nonparametric methods.
7.2 Problems for Further Study

The entropy estimates of section 4.5 were disappointing in
comparison Qith existing measures of association, but it is felt that
better estimates of parameter H(d) will make this an important
approach in testing for independence. Furthermore, entropy
diagnostics should be valuable tools to many areas of bivariate data
modeling. For example, goodness-of-fit tests are readily suggested by
examining the information between a null hypothesis density and a
nonparametric density estimate. The utility of information
functionals spreads across many areas of application. A
characterization problem might be aided by information functionals,

with an open research question being whether
'(fx,Y‘fva) = -(1/2) log (1-p2) (9.2.1)

is a defining characteristic of bivariate normality or whether it
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defines a more general class of distributions. |If this equation
characterized bivariate normality, an entropy based test of bivariate
normality could be developed using Pearson's r to estimate the rormal
entropy and using the estimated dependence density to form an entropy
statistic. The difference of these statistics would then be a version
of the information divergence discussed in section 2.5.

The use of subjective criteria in model selection should motivate
the study of objective techniques for choosing a model over
competitors. One is motivated to consider a function of the sample
entropy to evaluate the contribution of additional terms in an
expansion. A version of maximum entropy analagous to the AIC or CAT
criterion functions could then be developed to arrive at an optimal
order of approximation.

The distribution theory for entropy statistics remains to be
investigated, with motivation provided by recent papers by Stute
(1982) and Taniguchi (1980). The asymptotic theory in the univariate
case for the minimum information density estimate needs to be
resolved, indicating the need for continued research into the
distribution theory of non-standard regression models.

Multivariate robustness is also a topic of interest, with papers
by Gnanadesikan and Kettenring (1972) and Green (1981) suggesting
research questions for the problem of trimming a multivariate data set
of outliers. The computer implementation of data trimming procedures
is also of interest.

Finally, one is interested in discovering bivariate distributions

for which the classical nonparametric measures of association perform
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poorly. Further research may then be motivated into the numerical
approximation of conditional quantile functions of interest to be used
in simulation studies. The problem of simulating data corresponding
to existing data as a validity check of an analysis has been
approached from a conditional quantile perspective, implying the need
for good estimates of the conditional quantile function. Such
estimators have yet to be proposed, but one may approach the problem

using the function approximation techniques suggested by this work.
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APPENDIX A

A.l Subprogram MIDEN

SUBROUTINE MIDEN(X,N,A,B,CAPT, I MOD)

Chekdedededehhdekhkhhhkikhdhidiodsesfeddkddkdhdidddhdidkkikdkikkiikikikikikiikikiiiik

SUBROUTINE TO PERFORM NONPARAMETRIC DENSITY ESTIMATION USING
LEAST SQUARES REGRESSION MINIMUM INFORMATION TECHNIQUE.
LEGENDRE POLYNOMIALS ARE EMPLOYED FOR THE ORTHOGONAL EXPANSiON

c

c

c

c

c

c INPUT: X,N - DATA AND SAMPLE SIZE

c A,B - MIN AND MAX DATA VALUES

o CAPT - LABEL FOR X

o

C  OUTPUT: PLOTS AND DESCRIPTIVE STATISTICS
c
c
c
c
c

SUBPROGRAMS CALLED: PLOTXY,FTERP,MAX,MIN,

SEQREG,LEGP,NNDEN, SWEEPD,RELMIN,CLPLTI

REKRRKRKIRKIIRRKERIKKRRIRRKIRKIRKIRRARKKRRKARRKRKRKK KRR KK kK
DIMENSION CAPT (20} ,X (N),Y (150) ,FENN(150) ,FMI (150)

DIMENSION CBAR(13),AIC(13)

DIMENSION THETA(12),P(3,12),COF (12,12),10RD (12) ,BEST(78,3),

+RVAR (12) ,NVAR(12) ,COFF (11) ,MORD (5) , XNORD (5)
DOUBLE PREC!SION COV(13,13)
DATA NAIC/LH AlIC/
DATA NTHT/LHTHET/
DATA NCOF/LH COF/
DATA NAMX/UH X /
DATA NAMFN/LH FNN/
DATA NAMFM/LH FMI/
DATA NRVR/LHRVAR/
DATA I0RD/2,3,4,5,6,7,8,9,10,11,12,1/
DATA MORD/2,3,6,11,8/

DATA XNORD/LH=2 ,LH=3 ,LH=6 ,hH=11 ,LH=AIC/

DATA XMN/LHM (N) /
CAPT (13) =XMN
XN=FLOAT (N)
MN=10
RANGE=B-A
IDEG=0
CALL LEGP(12,P, |DEG)
DO 4O K=1,3
DO 40 J=1,12
COF (K, J) =P (K, J)
LO CONTINUE
DO 50 K=4,12

228 |
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CALL LEGP(12,P,IDEG)
D0 50 J=1,12
COF (K,J) =P (3,J)
CONT INUE
DO 240 [TERI=1,2

- D0 25 I=1,N

Y (1)=x(1)
CONT INUE
1F (1TER1.EQ.2) MN=20
CALL NNDEN (X,Y,N,N,MN,RANGE, FNN)
CALL PLOTXY (Y,FNN, 100, CAPT,NAMX,NAMFN, 1)
DO 55 1=1,N
FNN (1) =ALOG (FNN (1))
CONT INUE
DO 90 K=1,12
CBAR (K)=0.0
D0 80 J=1,K
COV(K,J)=0.0
00 70 I=1,N
ARGK=COF (K, 1)
ARGJ=COF (J, 1)
IF(K.EQ.1) GO TO 61
D0 60 L=2,K
ARGK=ARGK+COF (K,L) * ((2.0% (X (1) ~A) /RANGE-1.0) % (L-1))
ARGJ=ARGJ+COF (J,L) * ((2.0% (X (1) -A) /RANGE-1.0) *% (L-1))
CONT INUE
CONT I NUE
1F(J.EQ.1) CBAR (K)=CBAR (K) +ARGK
COV (K, J) =COV (K, J) +ARGK®ARGJ
CONT!NUE
IF(J.EQ.1) CBAR(K)=CBAR (K) /XN
coV (K, J) =COV (K, J) /XN-CBAR (K) *CBAR (J)
IF(K.NE.J) COV(J,K)=COV(K,J)
CONT INUE
CONT INUE
CBAR(13)=0.0
DO 120 J=1,12
Cov(13,J)=0.0
DO 110 I=1,N
ARGJ=COF (J,1)
DO 100 L=2,J
ARGJ=ARGJ+COF (J,L) * ((2.0% (X (1) -A) /RANGE-1.0) x% (L-1))
CONT INUE
1F(J.EQ.1) CBAR(13)=CBAR(13)+FNN(I)
cov(13,J)=COV (13, J) +ARGJRFNN (1)
CONT INUE
1F(J.EQ.1) CBAR(13)=CBAR(13) /XN
cov(13,J)=COV(13,J) /XN-CBAR (J) XCBAR (13)
cov(J,13)=CcovV(13,J)
CONTINUE
COV(13,13)=0.0
DO 130 I=1,N




130

140

150

160

170
180

190

230

cov(13,13)=COV(13,13)+FNN(!)*FNN (1)
CONTINUE
cov(13,13)=cov(13,13)/XN~CBAR (13) #CBAR (13)
DO 14O i=1,N

FNN (1) =EXP (FNN (1))

CONT INUE

CALL SEQREG{COV,13,12,10RD,BEST,78,RVAR,NVAR,NIVN)
CALL CLPLT1(RVAR,NIWN,1,NRVR,41,1)

NV 1=N|VN+1

AIC(1)=-1.0/XN

A1C(2) =ALOG (RVAR (1)) +2.0/XN

DO 150 I=2,NIVN

AIC(I1+1)=ALOG (RVAR(I))}+2.0%FLOAT (1) /XN
CONT INUE

DEC=1./XN

CALL RELMIN(AIC,%V1,DEC,MIN1,MIN2,NAIC)
MINI=MINI=-1

MIN2=MIN2-1

MORD (5) =MIN1

DO 230 ITER=1,5

KORD=MORD (1 TER)

CAPT (14) =XNORD (I TER)

K=NVAR (KORD)

DO 160 I=1,KORD

THETA (1) =BEST (K, 2)

K=K+1

CONTINUE

CALL CLPLTI(THETR KORD,!,NTHT,41,1)

DO 180 K=2,KORD

COFF (K-1)=0.0

DO 170 J=2,KORD

COFF (K~1)=COFF (K~1)4+COF (J,K) *THETA (J~1)
CONT INUE

CONT INUE

CALL CLPLT!(COFF,KORD-1,1,NCOF,k1,1)
CALL EQSPY(A,B,100,Y)

FSUM=0.0

FMODE=O.

XMODE=999.

FMEAN=0.0

FVAR=0.0

Do 200 I=1,100

FMI(1)=0.0

DO 190 L=2,KORD

FMI(1)=FMI (1) 4+COFF (L=1) % ((2.0% (Y (1) -A) /RANGE-1.0) *#% (L-1))
CONT I NUE

FRI (1) =EXP (FMI (1))

FSUM=FSUM+FAT (1)
FMEAN=FMEAN+Y (1) #FMI (1)
FVAR=FVAR+Y (1) %Y (1) #F M1 (1)

{F (FMODE.GT.FMI (1)) GO TO 200
FMODE=FMI (1)

fe
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220
284

290

230
240
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XMODE=Y (1)

CONTINUE

F SUM=F SUMXRANGE /100.0

FMEAN=F MEANXRANGE / (FSUM*100.0)
FMODE=F MODE /F SUM
FVAR=FVARXRANGE / (FSUM%100.0)
FVAR=F VAR-FMEANKF ME AN
DTEST=0.0

Do 210 I=1,N

FMI (1) =FMI (1) /FSUM
DTEST=DTESTH+ABS (FMI (1) -FNN (1))
CONT I NUE

DYEST=DTEST/XN

WRITE (6,220) DTEST

FORMAT (/, 10X, 'AVE OF SUM OF ABS (FMI-FNN)=',F10.4,/)
WRITE (6,284)

FORMAT (1H1,7(/))

WRITE (6,290) FMEAN,FVAR,FMODE, XMODE, FSUM
FORMAT(///,13X,'+', 108 (1H-) ,'+',/,13X,'|  PARAMETER ',

+'FUNCTIONALS: MEAN =',Fi0.4,', VARIANCE =',F10.L,"', MODE =',
+F10.4,' AT X = ',F10.4,"' ['e/413%, '] INTEGRATING FACTOR =',

+F10.4,75X, "], /, 13X, '+', 108 (1H-) , '+', /)
CALL PLOTXY (Y,FMi,100,CAPT,NAMX,NAMFM, 1)
CONT INUE
CONT INUE
RETURN
END

A.2 Subprogram CMPDEN

SUBROUT INE CMPDEN (W,N,CAPT,THETA, I NDW,NVW, | SORT)
ARRRARRKRRARRRRRAKRARKAXRRKIKIRRRARKRRKKKKRRKK KR KRR KKKk fe K dek

THIS SUBPROGRAM COMPUTES A SMOOTHED DENSITY QUANTILE
FUNCTION BASED ON ORTHOGONAL EXPANSION IN TERMS OF
COMPLEX EXPONENTIALS. A NEAREST NEIGHBOR ESTIMATE 1S
OBTAINED AS A RAW DENSITY QUANTILE AND THEN A SEQUENTIAL
REGRESSION ROUTINE 1S APPLIED WITH THE RAW D-Q TREATED

AS A DEPENDENT VARIABLE. A COMPLEX SWEEP OPERATOR IS THEN
USED TO OBTA(N COEFFICIENTS AND RESIDUAL VARIANCES FOR
VARIOUS ORDERS, AND FINALLY PARZEN'S CAT CRITERION IS
USED TO CHOOSE THE 'BEST' EXPANSION.

INPUT: W - RAW DATA
N - SAMPLE SIZE
{SORT - O IF W SORTED, ) OTHERWISE.

OUTPUT: NVW ~ ORDER OF EXPANSION CHOSEN (NUMBER OF INDEP. VAR.)

|
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THETA - COEFFICIENTS IN EXPANSION
INDW - VECTOR OF INDICES CORRESPONDING TO COEFFICIENTS
CHOSEN j

c
c
c
c
C SUBROUTINES CALLED: CSQREG,CSWEEP
c

c

ARRARKARKAXAKAKEARAKARIAARAKRAXRARRKKAR KA AR AKARRIRAREARLAKkkXhA Rk B
DIMENSION W(N) ,FMC (200) ,THETA (21) , INDW(21) ,BEST (231, 3),
+RVAR (21) ,NVAR (21) , IORD! (21) , tORD (21) , FNN (200) , T (200) , FKO (200)
DIMENSION CAPT (20) ,MORD (3) ,CORD (3) |
COMPLEX PHI (22,22) ,PHIBAR(21) ,ZARG,CEXP,CONJG, CMPLX
DATA I0RDI/11,10,12,9,13,8,14,7,15,6,16,5,17,4,18,3,19,2,20,1,21/
DATA LVAR,LTHT/4HRVAR, 4HTHET/
DATA NAMX/WH X/
DATA NAMFN,NAMFC/LH FNN,4H FMC/
DATA NAMM/LH FHO/
DATA MORD/2,8,15/
DATA CMN/LHM(N) /
CAPT (13) =CMN
DO 1 i=1,21
1ORD (i) =10RD! (1)
1  CONTINUE
DO 5 I=1,N
T)=w(1)
5 CONTINUE _
N2=N-2
M=21
Ml=p+1
MID=1]
TWOP | =8, 0%ATAN (1.0)
DENOM=1./FLOAT (N+1)
If (ISORT.EQ.0) GO TO 10
CALL GRD(T,N)
CALL ORD (W,N)
10 CONTINUE
A=T (1) -DENOM
B=T (N) +DENOM
RANGE=B-A

[ —

c
C COMPUTE NEAREST NEIGHBOR DENSITY ESTIMATE
c
D0 200 (TERI=1,2
MN=8
tF (ITER1.EQ.2) MN=15
CAPT (14) =CORD (2)
IF(ITER1.EQ.2) CAPT (14)=CORD (3)
CALL NNDEN(T,W,N,N,MN,RANGE, FNN)
CALL PLOTXY (T,FNN,N,CAPT,NAMX,NAMFN, 1)
FBAR=0.0
DO 4O 1=3,N2
FBAR=FBAR+FNN (1)
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CONT INUE
FBAR=FBAR/FLOAT (N-4)

DO 60 I=1,M

11=1-MID

PHIBAR (1) =CMPLX {0.,0.)

DO 50 K=3,N2

ARG=TWOP | XFLOAT (1 1) * (T (K) -A) /RANGE
ZARG=CMPLX (0., ARG)

PHIBAR (1) =PH!BAR (1) +CEXP (ZARG)

CONT INUE

PHIBAR (1) =PHIBAR (1) /FLOAT (N-4)

CONT INUE

00 90 i=1,M

Do 80 J=1i,|

J1=y-MID

JI=J-M1D

PH! (1,J)=CMPLX (0.,0.)

DO 70 K=3,N2

ARG=TWOP 1 * (FLOAT (1 1) ~FLOAT (JJ) ) (T (K) ~A) /RANGE
ZARG=CMPLX (0., ARG)

PHI (1,J) =PHt {1 ,J) +CEXP (ZARG)

CONT I NUE

PHI (1,J)=PHI (1,J) /FLOAT (N-k) ~PHIBAR (1) *CONJG (PHIBAR (J))
PHI (J, 1) =CONJG (PHI (1,J))

CONT I NUE

CONT INUE

DO 110 I=1,M

it=i-MID

PHI (M1, 1)=CMPLX (0.,0.)

DO 100 K=3,N2

ARG=-TWOP 1 %FLOAT (1 1) * (T (K) -A) ./RANGE
ZARG=CMPLX (0., ARG) .

PHI (M1, 1) =PHI (M1, 1) +FNN (K) *CEXP (ZARG)
CONTINUE

PHI (M1, 1)=PHI (M1, 1) /FLOAT (N-L) ~FBARXCONJG (PHIBAR (1))
PHI (1,M1) =CONJG (PHI (M1, 1))

CONT I NUE

PHI (M1,M1) =CMPLX (0.,0.)

DO 120 K=3,N2

PHI (MY, M1)=PHI (M1, M1)+FNN (K) *FNN (K)
CONTINUE

PHI (M1,M1)=PHI (M1,M1) /FLOAT (N-4) ~F BARAFBAR
CALL CSQREG (PH!,22,M, 1ORD,BEST,231,RVAR,NVAR,NIVN)
CALL CLPLT) (RVAR,NIVN,1,LVAR,41,1)
NVi=NIVN+)

00 190 ITER=1,3

NVW=MORD (I TER)

CAPT (1h) =CORD (1 TER)

K 1=NVAR (NVW)

DO 140 K=1.NWVW

{NDW (K) =1 F I X (BEST (X1, 1)+0.5)
THETA (K) =BCST (K1, 2)

e = - G e R
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K1=K 141
140 CONTINUE

WRITE (6,150)
150 FORMAT (1H1)

CALL CLPLTY (THETA,NVW,1,LTHT,41,1)

FSUM=0.0

DO 170 i=1,50

FMC(1)=0.0

T())=A+FLOAT (1) *RANGE/50.0

DO 160 K=1,NVW

ARG=TWOP | #F LOAT (INDW (K) = 11) % (T (1) =A) /RANGE

FMC (1) =FMC (1) +THETA (K) *#COS (ARG)
160 CONTINUE

FMC (1) =EXP (FMC (1))

FSUM=FSUM+FMC (1)
170 CONTINUE

FSUM=F SUM*RANGE /50.0

D0 180 1=1,50

FMC (1) =FMC (1) /FSUM

FHO (1) =,5%XNORM(0.,1.,T{1))+.5%XNORM (3., .5,T (1))
180 CONTINUE

CALL SED{AG(FHO,FMC,50,RANGE,XSE,XMAXD, XMSE)

CALL PLTXYZ(T,FMC,FHO,50,CAPT,NAMX,NAMFC,NAMM, X | SE, XMAXD, XMSE)
190 CONTINUE
200 CONTINUE

RETURN

END

A.3 Two Step FORTRAN-SAS Program Duplicating MIDEN

in the following listing, items appearing in lowercase represent
options depending on the system and the intended application.

// job card

// optional operating system cards

//STEP1 EXEC FORTX,REGION=512K <--- one step FORTRAN procedure
//FTO1FOO1 DD DSN=WYL.scratch file name

//SYSLIB DD

// DD

// bD

// DD

// DD name of user subroutine library (TIMESBOARD in this case)
//SOURCE DD * '

c
€ PROGRAM TO PERFORM NONPARAMETRIC DENSITY ESTIMATION USING

C  LEAST SQUARES REGRESSION. DATA SET WRITTEN FOR USE BY SAS GLM.

L
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SEE WOODFIELD DISSERTATION FOR MORE INFORMATION.

DIMENSION CAPT (20),L (5),X(150) ,FNN(150),Y (150)
DIMENSION THETA{12),P(3,12),CO0F (12,12)

READ DATA SET

READ (5, 10) CAPT
FORMAT (20Ak4)
READ (5,20) N,L
FORMAT (15,4X,5Ak)
READ (5,L) (X (1),i1=1,N)
DO 25 |=1,N
Y(1)=x(1)
CONT INUE
A=X (1)
B=A
DO 30 I=2,N
FF(X(1).GT.B) B=X{I)
IF(X(1).LT.A) A=X(!)
CONTINUE
A=A-1.0/FLOAT (N)
B=B+1.0/FLOAT (N)
RANGE=B-A
| DEG=0
CALL LEGP(12,P,IDEG)
DO 4O K=1,3
DO 4O J=1,K
COF (K, J) =P (K, J)
CONT I NUE
DO 50 K=k,12
CALL LEGP(12,P,IDEG)
DO 50 J=1,K
COF (K,J) =P (3,J)
CONT I NUE
CALL NNDEN(X,Y,N,N,10,FNN)
D0 70 I=1,N
DO 60 K=2,12
THETA (K) =COF (X, 1)
D0 60 J=2,K
THETA (K) =THETA (K) +COF (K, J) * ( (2.0% (X (1) =A) /RANGE=1.0) *% (J-1))
CONT ) NUE
WRITE (1,65) FNN(I), (THETA(K) ,K=2,12)
FORMAT (1X,7F10.5,/,1X,5F10.5) :
CONT INUE
sSToP
END
SUBROUTINE LEGP (N,P, I DEG)

code for subprogram LEGP

. e —




———

236

SUBROUTINE NNDEN(X,Y,N,M,MN,FNN) j

code for subprogram NNDEN

//SYSIN DD *
data goes here

/7%

//STEP2 EXEC SAS

//ONE DD DSN=WYL. description of tape | above where output

of STEP! was written

DATA TWO; INFILE ONE:

INPUT FNN X1-X6 #2 X7-X11;

Y=L0G (FNN) ;

CARDS ; )
PROC GLM;
MODEL Y = variable listing for variables to be included in model/ P;
OUTPUT OUT=NEW PREDICTED=YP;

DATA THREE; SET NEW;

FHAT=EXP (YP) ;
PROC PLOT DATA=THREE; PLOT FHAT*X1='%k';
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APPENDIX B

BISAM: A Program for Bivariate Data Analysis

PROGRAM BISAM

INPUT: NTAPE - TAPE

IPLTY - 0-->
1-->
2-=>
3-->

IPLT2 - O-->
)-->

IPLT3 - 0-->
1==>

1-->

s NN sNesNsNaNasNsNeNaNeNeNaNaNeNeNasNeNeNeNeNea NN s Ne e s Ea o e

BIVAR

SUBPROGRAMS CALLED:

2N g NN aNasN e NN e NeNeNaNaNal

Khfekkkkhkkhkhkhdihkhkkkhkkkhhhdidkfediokhhkikhhhikikkkiodkinkx

DRIVER PROGRAM FOR BIVARIATE DATA ANALYSIS

THIS PROGRAM PRODUCES SCATTER PLOTS, DESCRIPTIVE STATISTICS,
AND CORRELATION STATISTICS FOR A SET OF BIVARIATE DATA.
BIVARIATE DENSITY ESTIMATION IS PERFORMED ON THE DEPENDENCE
DENSITY USING MINIMUM BI-INFORMATION TECHNIQUES.

A LOX4O GRID OF DENSITY AND DENSITY QUANTILE VALUES .5
WRITTEN TO TAPES 1 THROUGH 3 FOR THE ORDERS 8, 24, AND 48
TO BE USED FOR GRAPHICAL OUTPUT USING SAS/GRAPH.

SEE WOODF!ELD DISSERTATION FOR MORE (NFORMATION.

WHERE DATA SET RESIDES

(X,Y) - BIVARIATE DATA (INDIVIDUALLY, X FIRST)

MORD - MAXiMUM AUTOREGRESSIVE ORDER TO BE USED FOR
UNIVARIATE AR DENSITY ESTIMATION (<=6)

1DQX, IDQY - NULL DISTRIBUTIONS FOR AUTOREGRESSIVE SMOOTHING

NO SCATTER PLOTS

SCATTER PLOT OF DATA

SCATTER PLOT OF RANK TRANSFORMED DATA
BOTH SCATTER PLOTS

NO AUTOREGRESSIVE DENSITY PLOTS

BEST ORDER AR DENSITY PLOTS

NO QUANTILE BOX PLOTS

QUANTILE BOX PLOTS FOR BOTH X AND Y

IDST ~ 0--> NO UNIVARIATE DESCRIPTIVE STATISTICS

UNIVARIATE DESCRIPTIVE STATISTICS FOR X AND Y

KDEL - MAXIMUM NUMBER OF EXTREME POINTS TO EXCLUDE FROM

{ATE ANALYSIS

DATAIN,RANK,ORD2,PEARSN, SPRMN,PPLOT,TRIM,
KENDAL, CMPINF ,CPTENT,RELMIN,MIN,PLOTXY,FTERP,
MINMAX,CSQREG,CSWEEP, AUTDEN, ORD,QHLIN,
QTOFQ,WSPACE,FORIER,AUTORG, PARZ,AREST,
FQFNC,MDNRIS, QF IND,MAX,CLPLT1,DESTAT,QPLOT,
EXPAND

RREARAKKRRRARRAKRARAKRKRRRRKAIRRARARRKA KRR KRSk dkhdhhkkhikik
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COMMON X (500) ,Y (500) ,RANKX (500) ,RANKY (500)

DIMENSION L (5),LABY (20) ,LABX (20) ,T (500, 2) ,HD (&)

DIMENSION CHAR (5) , XNAME (20) , YNAME (20) , CAPT (20) , CRNK (6)
DIMENSION W(500) ,5A (1003) ,GE (1003)

EQUIVALENCE (T(1,1),X(1))

EQUIVALENCE (T (1,2),Y(1))

DATA NOUT,NIN/6,5/

DATA CHAR/TH%, 1H+, 1HX, 1H#,1H./

DATA XNAME/10%1H , 1HX,9%1H /

DATA YNAME/10%1H ,1HY,Q*1H / 4
DATA CAPT/LHSCAT,LHTER ,4HPLOT,4H OF ,4LHX VS,UH. Y ,1h%hH /
DATA CRNK/LH- RA,LHNK T,4HRANS,4HFORM,LHATIO,4HN /

WR!TE (NOUT, 1)
1 FORMAT (1HY1)
READ (NIN,10) NTAPE, IDQX, iDQY,MORD, iPLT}, IPLT2,/FLT3, IDST,KDEL

10 FORMAT (915)

WRITE {NOUT, 20)

20 FORMAT (//,10X,20 (bHXkx%) ,/,10X,'*' ,78%,'*',/,10X,'* BISAM ',
+'- BIVARIATE DATA ANALYSIS USING FOURIER EXPANSIONS',19X,'%',
+/,10X, '* AND QUANTILE TECHNIQUES',L4LXx,'x',/,10X,"'*%",
+78X,'%"',/,10X,20 (bH*%**xx))

CALL DATAIN (NTAPE,X,NX,L,LABX)
CALL DATAIN (NTAPE,Y,NY,L,LABY)
N=NX

1F (NX.EQ.NY) GO TO 40

WRITE (NOUT, 30) LABX,LABY

30 FORMAT (1H ,10X,20AL/,10X,20AkL,//, 10X, 'SAMPLE SIZES NOT EQUAL.',

+!' BIVARIATE ANALYSIS INAPROPRIATE. EXECUTION TERMINATED.')
STOP
40 WRITE (NOUT,50) LABYX,LABY,N
50 FORMAT(1H ,9X,20Ak4/,10X,20Ak,//,10X, 'N=',|5)
1F ((IPLT1.EQ.1) .OR. (IPLT1.EQ.3))
+CALL PPLOT(X,Y,500,N,1,CHAR, CAPT, XNAME, YNAME,0)
WR'TE (NOUT, 1)

c
C ORDER BIVARIATE DATA BY X VALUES
C
CALL ORD2(T,N,500)
IF (IDST.EQ.0) GO TO 58
NN 1=2%N+)
(1]4] 5‘ I-]oN
w(i)=x(1)
51 CONT!INUE
CALL DESTAT (W,N,LABX, IPLT3,XMED,SA,GE,NN1)
D0 52 i=1,N
W{l)=Y (1)
52 CONTINUE
CALL ORD (wW,N)
CALL DESTAT (W,N,LABY,IPLT3,YMED,SA,GE,NN1)
C
C TRIM DATA SET OF AT MOST KDEL EXTREME POINTS
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o
58 CALL TRIM(X,Y,XMED,YMED,KDEL,N,NEWN)
N=NEWN
o
C OBTAIN RANKS OF X AND Y VALUES
c N
CALL RANK (X,N,RANKX)
CALL RANK (Y,N,RANKY)
c
C COMPUTE CORRELATION COEFFICIENTS
c
CALL SPRMN (N,RHO, SUMD)
CALL KENDAL (N, TAUA,TAUB,SOMER,NC,ND,NIND,NDEP,NPAIRS)
CALL PEARSN(N,R)
CALL CMPINF (N,MORD, 1DQX, IDQY, IPLT2,HD)
c
C WRITE VALUES OF CORRELATION COEFFICIENTS
c

{F ((NIND.EQ.O) .AND. (NDEP.EQ.0)) GO TO 59

WRITE (NOUT,55) NIND,NDEP
55 FORMAT(//,10X,'TIES IN X =',i4,*, TIES INY =',14,//)
59 WRITE (NOUT,50) LABX,LABY,N

WRITE (NOUT, 60)

60 FORMAT (10X, ' PEARSON SPEARMAN KENDALL A KENDALL B',
+! SOMER D H(D-TIL) H (D8) H(D2L) H (DL8) ',
+/,10X,10 (9H--~~~--=- ))

WRITE (NOUT,70) R,RHO,TAUA,TAUB,SOMER,HD (&) ,HD (1) ,HD (2) ,HD (3)

70 FORMAT (10X,9F10.4)

DO 80 I=1,N
X (1) =RANKX (1) /FLOAT (N+1)
Y (1) =RANKY (1) /FLOAT (N+1)
80 CONTINUE
DO 90 I=1,6
CAPT (1+6) =CRNK (1)
90 CONTINUE
IF((IPLT1.EQ.2) .OR. (1PLT1.£Q.3))
+CALL PPLOT(X,Y,500,N,1,CHAR, CAPT, XNAME,, YNAME ,0)

STOP

END

SUBROUTINE CMPINF (N,MORD, iDQX, IDQY, IPLT2,HD)
CHARARRIAKRAKAKKXKKAAKRAKKARKRRRKRRRKARKARRARKKKX KRR AR RRA A KRR

SUBROUTINE TO COMPUTE COVARIANCE MATRIX OF COMPLEX

EXPONENT AL "SUFFICIENT STATISTICS" TO BE USED IN

SEQUENTIAL REGRESSION ROUTINE TO OBTAIN "“BEST REGRESSION"
MODELS FOR ORDERS 1 THROUGH M*M. VARIOUS ORDER DETERMINING
CRITERION ARE COMPUTED AND DISPLAYED VIA SUBROUTINE CPTENT.
THE BIVARIATE DENSITY QUANTILE IS FORMED BY TAKING THE PRODUCT
OF THE ESTIMATED DEPENDENCE DENSITY AND THE UNIVARIATE
AUTOREGRFSSIVE ESTIMATORS.

aNaNsNsNsNeNaNaNal el
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c INPUT: RANKX,RANKY -~ VECTORS CONTAINING RANKS OF X AND CORANKS
C OF Y

C X,Y - BIVARIATE DATA

c N - SAMPLE SIZE

c IDQX, 1DQY - NULL UNI!VARIATE DENSITY INDICATORS

c MORD - MAXIMUM ORDER FOR AR DENSITY EST. PROCEDURE

c IPLT2 ~ PLOTTING OPTION FOR UNIVARIATE DENSITY QUANTILES
c
c
c
c
c

OUTPUT: PH! - COVARIANCE MATRIX
FQX,FQY ~ UNIVARIATE DENSITY QUANTILE FUNCTIONS
DQHAT - BIVARIATE DENSITY QUANTILE FUNCTION
HD - VECTOR OF ENTROPY ESTIMATORS: 1 -~ ORDER 8
2 - ORDER 24
3 - ORDER k8
L - RAW (FROM D-TILDA)

c

c

C

c

C  NOTE: FQX,FQY ARE NOT PASSED BACK TO THE CALLING PROGRAM.
c ALSO, CRITERION FUNCTIONS ARE PLOTTED BUT NOT PASSED
c BACK TO THE CALLING PROGRAM,
c
o
c
c
c

SUBPROGRAMS CALLED: CSQREG,CPTENT,PLOTXY,FTERP,AUTDEN,RELMIN,MIN

KRR RhARRARKRRKA KKKk hkkhkhhkhdkhkhkkhhhkhhhhihikhikhhiihkhiikkikik

COMMON X (500) ,Y (500) ,RANKX (500) , RANKY (500)

DIMENSION IND(97) ,RADSQ(500) , 10RD (49) ,
+HD (4) ,DTIL (500)

DIMENSION MENT (3)

COMPLEX ARGM{13,13),PHI (50,50) ,CEXP,CONJG,CMPLX, ZARG

COMPLEX ALPHX (5) ,ALPHY (5) ,COF (97)

DATA I10RD/25,24,18,17,26,32,19,31,33,23,11,16,10,30,12,9,
+27,39,20,38,34,40,13,37,41,22,4,15,3,29,5,8,2,36,6,1,28,
+46,21,45,35 47, 14,44, ,42,48,7,43,49/

DATA MENT/8,24,48/

REAL LGDHAT

IF(N.GT.29) GO TO 20

WRITE (6,10) N

10 FORMAT (10X, 'SAMPLE SIZE ',12,' IS TOO SMALL. CMPINF SKIPPED.')

RETURN

SET VALUES OF CONSTANTS

OO0

20 N2=N-2
00 21 =i,k
21 HD(1)=999.0

FOR THIS VERSION USING COMPLEX SEQUENTIAL REGRESSION THE
MAXTMUM APPROX IMATING ORDER 1S SET AT 7.

s NaNaNel

M=7
L=MOD (M, 2)
ML= (M-L) /2




241

JF{L.EQ.O) M=M+1
M2=2%M-1

MM=MAM

Ml=MM+]

MM =MM- 1
DENOM=1.0/FLOAT (N+1)
TWOP i =8.0%ATAN(1.0)
PI=TWOP!/2.0

COMPUTE NEAREST NEIGHBOR OENSITY ESTIMATE AND RAW ESTIMATE
OF ENTROPY

OO0

HDO=0.0

DO 30 1=3,N2

DO 25 J=1,N

RADSQ (J) = (RANKX (1) ~RANKX (J) ) %%2+ (RANKY (1) -RANKY (J) ) #*x2
25 CONTINUE

D0 26 K=1,5

CALL MIN(RADSQ,N,RM!N, INDR)

RADSQ (INDR) =FLOAT (2%N#N)
26 CONTINUE

VKJ=RMIN*DENOM*DENOMXP |

IF (VKJ.EQ.0.0) VKJ=0.5%DENOMXDENOMXP |

DTIL 1S ALOG (DTIL)

OO0

DTIL (1) =~ALOG (5.0/ (FLOAT (N+1) #VKJ))
HDO=HDO~DTIL (1) ;

30 CONTINUE !
HD (4) =HDO/FLOAT (N-L)

COMPUTE MATRIX OF EXPONENTIAL CROSS-PRODUCTS TO BE USED FOR
COVARIANCE COMPUTATIONS

[aNeNeNel

BO 50 I=1,M2
REYRT
DO 50 Jwi,M2 %
JimJ-M
ARGM (1,J) =CMPLX (0.0,0.0)
DO 4O K=3,N2
ARG=TWOP | % (FLOAT (1 1) *RANKX (K) +FLOAT (J1) ®RANKY (K) ) *DENOM
ZARG=CMPLX (0., ARG)
ARGM (1, J) =ARGM (1, J) +CEXP (ZARG)
LO CONTINUE
ARGM (1, J) =ARGM (1 ,J) /FLOAT (N-4)
50 CONTINUE
c
C COMPUTE COVARIANCE MATRIX
c

B B

o

B
¥
o

DO 60 IN=1,MM
1=IN~]
12=M0B (1, M)




c
c
c

OO0 M

OO0

55
60
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1= (1-12) /M+M-ML

121 24+M=-ML

DO 55 JN=1,IN

J=JN-1

J2=M0D (J, M)

JI=(J-J2) /M

1=l 1-J1+ML

JJ=12-J2+ML

J1=J i+M-ML

J2=J2+M-ML

PHI (EN,JIN) =ARGM (1 1,JJ) ~ARGM (11, 12) *CONJG (ARGM (J1,J2))
PHI (JN, IN) =CONJG (PHI (IN,JN))
CONT I NUE

CONT INUE

COMPUTE LAST ROW OF COVARIANCE MATRIX

70

80

90

100

134

DBAR=0.0
DO 70 I1=3,N2

DBAR=DBAR+DTIL (1)

CONTINUE

DBAR=DBAR/FLOAT {N-4)

DO S0 IN=1,MM

J=|N-1

| 2=M0D (I , M)

1= (1-12) /M-ML

j2=12-ML

PH! (M1, IN) =CMPLX (0.0,0.0)

DO 80 K=3,N2

ARG=TWOP | % (FLOAT (1 1) *RANKX (K) +F LOAT (1 2) *RANKY (K) ) *XDENOM
ZARG=CMPLX (0.0, ARG)

PHI (M1, IN) =PHI (M1, IN) +DTIL (K) *CONJG (CEXP (ZARG) )

CONT INUE

PHI (M1, IN) =PH! (M1, IN) /FLOAT (N-4) ~DBARXCONJG (ARGM (1 1+M, | 2+M))
PHI (IN,M1) =CONJG (PHI (M1,IN))

CONTINUE

PHI (M1,M1)=0.,0

DO 100 K=3,N2

PHI (M1,M1) =PHI (M1,M1) +DTIL (K) *DTIL (K)

CONT INUE

PHI (M1,M1)=PHI (M1,M1) /FLOAT (N-4) ~DBARXDBAR

CALL ROUTINE CPTENT TO COMPUTE AND PLOT CRITERION FUNCTIONS AND
DETERMINE BEST AND SECOND BEST MODELS FOR D (U1,U2)

CALL CPTENT (RANKX,RANKY,N,M,PH!, I0RD, IND,COF ,MENT,HD)

COMPUTE UNIVARIATE DENSITY ESTIMATES USING AUTOREGRESS!VE

TECHNI QUE

WRITE (6, 134)
FORMAT (1H1)

G N W W e D i beeed  beey  bemy  buew b b b e
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CALL AUTDEN(X,N, I1DQX, IPLT2,MORD,ALPHX,RVARX,S1GX,NVX,0,kH X )
WRITE (6, 134)
CALL AUTDEN({Y,N,IDQY,)PLT2,MORD,ALPHY,RVARY,SIGY,NVY,1,4H Y )
WRITE (6,134)
WRITE (6,135) NVX,NVY
135 FORMAT (/, 10X, 'UNIVARIATE BEST ORDERS: NVX =',13,', NVY =',)3)
DO 260 1TER=1,3
PS1=0.0
ENT=0.0
WRITE (6,136)
136  FORMAT (/,19X,'U1',17X,'U2',15X, *DQHT', 15X, ' DHAT',/, 2X,
f +19 (bH----))
' DO 220 i=1,40
DO 220 J=1,40
Ul=FLOAT (1) /41,
U2=FLOAT (J) /b1,
c
C COMPUTE VALUES OF UNIVARIATE DENSITY-QUANTILE FUNCTIONS
c
FQX=1.0
1F (NVX.GT.0) FQX=AREST (U1,NVX,RVARX,ALPHX)
FQX=FQFNC (U1, 1 DQX) / (FQX*S|IGX)
FQY=1.0
IF (NVY.GT.0) FQY=AREST (U2,NVY,RVARY,ALPHY)
FQY=FQFNC (U2, 1DQY) / (FQYXSIGY)

COMPUTE BIVARIATE DENSITY QUANTILE BY FORMING PRODUCT
OF DEPENDENCE DENSITY AND AUTOREGRESSIVE ESTIMATORS

(g N aNeNel

LGDHAT=0.0
KP=MENT (I TER)
LOC=) :
IF (ITER.EQ.2) LOC=MENT (1)+1
IF (ITER.EQ.3) LOC=MENT (1)+MENT (2)+1
D0 200 K=1,KP
) |=|ND (LOC) -1
12=M0D (1 1,M)
1= () 1-12) /M-ML
12=12-ML
ARG=TWOP | * (FLOAT (1 1) *U1+FLOAT (12) U2)
ZARG=CMPLX (0.0, ARG)
LGDHAT=LGDHAT+REAL (COF (LOC) ACEXP (ZARG))
LOC=LOC+1

200 CONTINUE
IF (LGDHAT.GT.170.) RETURN
IF (LGDHAT.LT.-20.) LGDHAT=-20.
DHAT=EXP (LGDHAT)
ENT=ENT-LGDMAT®*DHAT
PS|=PS | +DHAT
DQHT=DHATAFQX*FQY
WRITE (ITER,210) U),U2,DQHT,DHAT

210 FORMAT (2X,4F19.10)
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1 MOD=MOD (I , 8)
JHOD=MOD (J, 8)
IF ((1MOD.EQ.O) .AND. (JMOD.EQ.0)) WRITE (6,210) U1,U2,DQHT,DHAT

220 CONTINUE
PSI=PS1/1681.0
ENT=ENT/1681.0
HD (I TER) =ENT/PS I1+ALOG (PS1I)
WRITE (6,224)
224 FORMAT (//, 10X, 20 (LHw===) , //)
WRITE (6,225) MENT (ITER) ,PSI
225 FORMAT (/, 10X, ' INTEGRATING FACTOR FOR ORDER ',13,' IS ',F10.b4)
WRITE (6,230)
230 FORMAT (//,10X, 'COEFFICIENTS FOR BIVARIATE DEPENDENCE DENSITY',
+//,12X, 'NU1',2X, 'NU2',2X,' REAL (COF) IMAG(COF)',/,10X,32(1H-))
LOC=1
1F (ITER.EQ.2) LOC=MENT (1)+1
{F (1TER.EQ.3) LOC=MENT (1)+MENT (2)+1
D0 250 iI=1,KP
1 I=IND {LOC) -1
12=M0OD (1 1, M)
11=(11-12) /M-ML
12=12-ML
WRITE (6,240) 11,12,COF (LOC)
240 FORMAT (10X,215,2F10.4)
LOC=LOC+1
\ 250 CONTINUE
i WRITE (6,224)
260 CONTINUE
RETURN
END
SUBROUT INE CPTENT (RANKX,RANKY,N,M,PH!, 10RD, IND,COF ,MENT,HD)
CRARAAKAARKAAKKRRRRAKEKRRARAARRAKARRARKRRARRARRRRAL KKK A KRR ALKk ARkRX

SUBPROGRAM TO COMPUTE AND PLOT ENTROPY OF D-HAT.

THIS SUBROUTINE WILL ALSO COMPUTE THE CRITERION FUNCTION
AIC AND PRINT THE SMALLEST TWO RELATIVE MINIMA,
COEFFICIENTS FOR THE THREE ORDERS SPECIFIED IN MENT

WILL BE RETURNED IN COf WITH THE CORRESPONDING INDICES
IN IND.

INPUT: N,M - SAMPLE SIZE, UNIVARIATE MAXIMUM ORDER (M*%2
USED FOR BIVARIATE MAX ORDER)
RANKX,RANKY ~ VECTORS OF RANKS AND CO-RANKS
PHI - COVARIANCE MATRIX
IORD ~ VECTOR OF ORDERED INDICES FOR SEQUENTIAL REGRESSION

AUXTLLIARY: NVAR,RVAR,BEST - VECTORS AND MATRIX
FROM ROUTINE CSQREG :

OUTPUT: COF,IND - SEE ABOVE

OO0 0OO00D

. - s <t
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C SUBROUTINES CALLED: PLOTXY,FTERP,MINMAX,RELMIN,MIN,CSQREG,CSWEEP
o
C************************************************t*****************#
c

DIMENS |ON RANKX (N) ,RANKY (N) ,AtC (50) ,

+MENT (3) , IND (97) , HD (&)

DIMENSION 10RD (49) ,NVAR (49) , INDV (1225) ,RVAR (49)

COMPLEX PHI (50,50) ,COF (97) ,BEST (1225)

REAL LGDHAT

MM=MXM

MM1=MM-1

L=M0OD (M, 2)

ML= (M-L) /2

TWOP i=8.0*%ATAN (1.0)

c
C CALL ROUTINE CSQREG TO PERFORM SEQUENTIAL REGRESSION ON PHI
c
CALL CSQREG (PHI,50,MM, IORD,BEST, INDV, 1225,RVAR, NVAR,N|VN)
CALL CLPLT1 (RVAR,NIVN,1,4HRVAR,41,1)
NVI=NIVN+]

COMPUTE AIC CRITERION FUNCTION

OO0

AIC(3)==1./FLOAT(N)
AIC{2) =ALOG (RVAR (1) ) +2.0/FLOAT (N)
50 30 1=2,NIVN . :
AIC (141) =ALOG (RVAR (1)) +2.%FLOAT (1) /FLOAT (N) ‘
30 CONTINUJE 2
DEC=).0/FLOAT (N)
WRITE (6,40)
LO FORMAT (/, 10X, 'OUTPUT FROM RELMIN FOR ORDER DETERMINING ',
+'CRITERION. (SUBTRACT ONE FOR TRUE ORDER)',/)
CALL RELMIN(AIC,NV1,DEC,MINI,MIN2,L4H AIC)
MINIsMINI-]
MIN2=MIN2-]
WRITE (6,50) MIN1,MIN2
50 FORMAT (/, 10X, 'BEST ORDER BY AIC =',13,/,10X,'2ND BEST ORDER ',
+'BY AIC =',13,/)

COMPUTE ENTROPY MEASURE FOR EACH ORDER

OO0

LOC=1
DO 180 I=1,3

K=MENT (1)

IF(K.EQ.0) GO TO 180
K 1=NVAR (K)

DO 170 KK=1,K

IND (LOC) #INDV (K1)
COF (LOC) =BEST (K1)
KimKi+1

LOC=LOC+1

W R W R W (T AT LI W e ] e

e
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1
170 CONTINUE
180  CONTINUE
RETURN |
END
&
I
|
]
]
]
I
I
1
i
]
i
i
i |
I A
i
T T T |
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APPENDIX C

! C.1 Subprogram CSQREG

SUBROUTINE CSQREG (A,NDIM,NIV, I0RD,BEST, INDV,MDIM,RVAR,NVAR,N!VN)
Chkdkdkikkhkhhkkhkhkkkhkikdhhikkkhkkkkhkkkkhkhkhhhkhkkhkkkkkkhhkhhhkkkkk

|
| c
: C SUBPROGRAM TO PERFORM SEQUENTIAL REGRESSION USING COVARIANCE
‘ C OR CORRELATION MATRIX A(NIV+1,NIV+1) .
c
c INPUT: A - COVARIANCE MATRIX (COMPLEX)
c ND!M - ROW DIMENSION OF A IN CALLING PROGRAM
c NiV - NUMBER OF INDEPENDENT VARIABLES
c IORD - INTEGER VECTOR CONTAINING INDICES OF VARIABLES
c IN THE ORDER THEY ARE TO BE ENTERED INTO THE MODEL
c MDIM - DIMENSION OF BEST IN CALLING PROGRAM
c
C OUTPUT: A - SWEPT COVARIANCE MATRIX
o BEST, INDV ~ VECTORS OF SUBSET |NFORMATION
c BEST CONTAINS LEAST SQUARES PARAMETER ESTIMATES
c INDV CONTAINS VARIABLE INDICES
c RVAR - VECTOR OF RESIDUAL VARIANCES
c IORD - VECTOR CONTAINING INDICES OF VARIABLES IN ORDER
c THAT THEY WERE ENTERED WITH VALUES CAUSING
c SINGULARITIES IN A OMITTED
c NIVN -~ NUMBER OF [NDEPENDENT VARIABLES INCLUDED IN
¢ ANALYSIS
c
C  SUBPROGRAMS CALLED: CSWEEP
c
CRARARRARRARARARARRRARRRARRRRARARARAARRARRRARARRARAAR KRR AR KKARAAALAX :
c #

COMPLEX A (NDIM,NDIM) ,BEST (MDIM) i
DIMENSION INDV(MDIM), IORD (NIV) ,RVAR(NIV) ,NVAR (NIV) LN
DATA TOL/1.E-20/ i
NVaN|V+]

NIVN=NIV

VAR=REAL (A (NV,NV))

LOC=1

LC2=1

KOUNT=)

K=)

10 10=10RD (K) 8.
KOUNT=KOUNT+1 b
TEST=REAL (A (1D, 1D) ) #%2+A | MAG (A (iD, I D) ) #%2 i /
IF(TEST.LE.TOL) GO TO 40
CALL CSWEEP (A,NDIM,NV,ID, D)
RVAR (K) =REAL (A (NV,NV) ) /VAR




20

30
Lo

50
60

DO 30 XK=1,K
K1D=10RD (KK)

IF (KK.NE.1) GO TO 20

NVAR (LC2) =LOC

LC2=LC2+1

INDV (LOC) =K 1D

BEST (LOC) =-A (NV,KID)
LOC=LOC+1

CONT INUE

GO TO 60

N{VN=N|VN-1

DO 50 I=K,N{VN

JORD (1) =1 ORD (1+1)

CONT INUE

GO TO 10

K=K+1

1F (KOUNT.LE.NIV) GO TO 10
RETURN

END

C.2 Subprogram CSWEEP

SUBROUT INE CSWEEP (A,NDIM,N,K1,K2)

CRARARARKRAKRRRKRRRRRRRARKRRARRRRIKRARRRAKRX KRR KRR R RR TR KKK

OO0 O0O0

OO0

o000

SUBROUTINE TO SWEEP THE NXN COMPLEX MATRIX A ON ITS Ki
THRU K2 DIAGONAL ELEMENTS (SWP (K) SWP (K) A=A)

INPUT

A,N,K1,K2

NDIM : ROW DIMENSION OF A IN CALLING PROGRAM
OUTPUT :

A

SUBROUTINES CALLED : NONE

REARRKAKARRAAARRARRRRRARRAARARRRRRRARRRRARRRARARARRRRARRAR AR AR

COMPLEX D,A (NDIM,NDIN)
DATA NOUT/6/

FIX DIAGONAL K :
DO 50 K=K1,K2

CHECK FOR ZERO :

i | o

S 4 ‘Wﬁ*r‘ L PP IR A
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TEST=REAL (A (K, K) ) x%2+A 1 MAG (A (K,K) ) k%2
JF(TEST.LT.1.E-25) GO T0 99
D=1./A(K,K)

A(K,K) =1,

(g N g]

KTH ROW :

DO 10 I=],N
10 A(K,1)=D*A (K, ()

KTH COLUMN :

(s Nale]

DO 20 J=1,N
IF(J.EQ.K) GO TO 20
A (J,K) ==-A (J,K) %D

20 CONTINUE

OTHERS :

OO0

00 4O J=1,N
IF(J.EQ.K) GO TO 4o
DO 30 I=1,N
IF(1.EQ.K) GO TO 30
A(J, 1) =A(J, 1) +A(J,K) %A (K, 1) /D
30 CONT I NUE
ko CONT I NUE

50 CONTINUE

GO TO 110

99 WRITE (NOUT,100) K,K1,K2

100 FORMAT (10X, 12,15HTH DIAG OF FROM,1X,12,1X,2HTO, IX, ﬁ
112,1X,17H1S ZERO IN CSWEEP)

110 RETURN
END

C.3 Subprogram AUTDEN

SUBROUTINE AUTDEN (W,N, 10QH, IPLT2,MORD, ALPH,RVARW,S1GO,NVW,

+1SORT,WLAB)
CRRARRRRRARRARARRRARRRRRRRRARE RXRRKKRRARKAXRARRARAXRRKKARRRARR AR

THIS SUBPROGRAM COMPUTES A SMOOTHED DENSITY QUANTILE

FUNCTION BASED ON THE AUTOREGRESSIVE METHOD OF PARZEN(1979).
THIS ROUTINE IS BASED ONE THE ONESAM PROGRAM DENSITY ESTIMATION
ROUTINE AND USES MANY OF THE SUBPROGRAMS OF ONESAM, SEE

(s NaNaNeNel
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PARZEN AND ANDERSON (1980) FOR DOCUMENTATION.

INPUT: W - RAW DATA
N - SAMPLE SIZE
IDQH - INDICATOR FOR NULL DIST. OF W
ISORT ~ O IF W AND RANKW SORTED, 1 OTHERWISE.
MORD - MAXIMUM ALLOWABLE ORDER (<=6)
IPLT2 ~ O0--> NO PLOTS
1==> PLOT OF AR DENSITY-QUANTILE FUNCTION
WLAB - VARIABLE NAME FOR W IN AL FORMAT

OUTPUT: NVW ~ ORDER OF AUTOREGRESSIVE DENSITY ESTIMATOR
ALPH ~ COEFFICIENTS FOR AUTOREGRESSIVE REPRESENTATION
RVARW - RESIDUAL VARIANCE FOR BEST ORDER
SIGO ~ INTEGRATING FACTOR (SIGMA-TILDA FOR NULL MODEL)

SUBPROGRAMS CALLwuD: ORD,QHLIN,QTOFQ,WSPACE,FORIER,AUTORG,PARZ,
AREST,FQFNC,MDNRIS,QF IND,PLOTXY, FTERP, MINMAX,
MIN, MAX

RAKKKRRRKKRAKRRKAKKKARKREXKAKRKRRRRAKRRR KRR K KKK KKK KKKk Kkkkkkkkkk

DIMENSION W(N) ,RVAR(5) ,U(500) ,QN (500) ,QL (500) ,FQ (500) ,
+WXS (500) , CWXS (500) , 1LOC (5) , T (500) ,CAT (5) , WK1 (500) ,WK2 (500)
DIMENSION CAPT (20)
COMPLEX A (5),PH! (5) ,ALPH (5) ,ALPHA (15) ,RESVAR
DATA CAPT/LHUNIV,kHARIA,UHTE D,4HENS|,LHTY-Q, bHUANT,LHILE ,
+4HFOR , 4HRAND, LHOM V,4HARIA,UHBLE ,8%L4H /
CAPT {13) =WLAB
WRITE (6,1) WL"B
1 FORMAT (//,10X, 'UNIVARIATE DENSITY ESTIMATION RESULTS FOR ',
+'VARIABLE ',Ak,//)
90 5 I=],N
T()=w(1)
5 CONTINUE
N2=mN+2
M=MORD+1
IF (M.GT.6) M=b
MM =M=
H=1./FLOAT (N+1)
1F(H.LT.0.02) H=0.02
IF (ISORT.EQ.0) GO TO 10
CALL ORD (T,N)
10 CONTINUE
TMIN=T (1)

COMPUTE N EQUALLY SPACED U VALUES BETWEEN O AND 1|

U(1)=0.0

DO 30 J=1,N

U (J+1) =FLOAT (J) *4
30 CONTINUE
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COMPUTE QUANTILE FUNCTION VIA LINEAR INTERPOLATION
CALL QHLIN(T,N,H,U,QN,0,NQ,TMIN, TINT,N2,WK1,WK2)
COMPUTE LITTLE Q AND FQ=1/(LITTLE Q)

NP 1=NQ+1
CALL QTOFQ(QN,U,NP1,QL,FQ)

COMPUTE WEIGHTED SPACINGS (L{TTLE D(U)) BASED ON 1DQH DIST.

NP 1=NQ+1
CALL WSPACE (WXS,CWXS,NP1,FQ, IDQH,U,S1G0)

COMPUTE FOURIER TRANSFORM OF WEIGHTED SPACINGS
CALL FORIER (WXS,U(2) ,N,A,M)
COMPUTE AUTOREGRESSIVE COEFFICIENTS FOR ORDERS 1 TO M

li=1
DO 100 K=1,MM}
KP 1=K+1
CALL AUTORG (A,KP1,M,ALPH,PH] ,RESVAR)
RVAR (K) =REAL (RESVAR)
1LOC (K) =1 |
DO 90 J=1,K
ALPHA (1 1) =ALPH (J)
i i+]
90 CONTINUE
100 CONTINUE
CALL PARZ (RVAR,M-1,N,CAT,NWW)
IF (NVW.EQ.0) GO TO 115
LOC=1L0C (NVW)
DO 110 I=1,NW
ALPH (1) =sALPHA (LOC)
LOC=LOC+]1
110 CONTINUE
115 CALL CLPLT1(RVAR,M-1,1,4HRVAR,41,1)

COMPUTE UNIVARIATE DENSITY-QUANTILE AT 100 POINTS AND PLOT
WRITE (6,120) SI1GO ’
120 FORMAT (/,10X,'SIGO = ',F10.k)
RVARW=RVAR (NVW)
DO 160 I=1,100
U(1)=FLOAT (1) /101.0
Fi=1.0
IF (NVW.GT.0) FI=AREST (U(I),NVW,RVARW,ALPH)
IF(F1.EQ.0.) FimH
FQ(t)=FQFNC (U(1),1DQH) / (F14S1GO)
160 CONTINUE
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IF (IPLT2.EQ. 1)

+CALL PLOTXY (U,FQ,100,CAPT,4H  U,4H FQ,1)
RETURN
END

C.k Subprogram LEGP

SUBROUTINE LEGP{(N,P, IDEG)

Khkdkhkkhhhkhhkkhkhkkkhkkhkhhkhkhkhkhhhkkkhhhkikhkkhkkkkkkhkkkkhk

SUBROUTINE TO GENERATE 3XN MATRIX P OF COEFFICIENTS

OF LEGENDRE POLYNOMIALS. ROW 3 CONTAINS COEFFICIENTS

FOR THE LEGENDRE POLYNOMIAL (OVER (-1,1)) OF

DEGREE IDEG (DETERMINED BY SUBROUTINE AFTER INITIAL CALL)

INPUT: N - SAMPLE SIZE (OR HIGHEST ORDER DES!RED)
IDEG - 0 --> FOR FIRST CALL
ORDER OF POLYNOMIAL [N THIRD ROW FOR SUBSEQUENT

CALLS (PROVIDED BY ROUTINE)

OUTPUT: P - THE 3XN MATRIX OF LEGENDRE POLYNOMIAL
COEFFICIENTS.

ALGORITHM: THE SECOND ORDER RECURSION RELATION COMMONLY
FOUND IN MOST TEXTBOOKS (SEE, E.G., CHURCHILL,
"SPECIAL FUNCTIONS")

fhkhkhhkkRkhkkhhkkkkkhkhihkhkhkkhkhkkkhkhhkhkrkkhhkkhikkhkkhkhkkkhkkkhkk
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DIMENSION P(3,N)
17 (1DEG.NE.O) GO TO 30
DO 20 I=1,3
DO 10 J=1,N
P(1,J)=0.0
10 CONTINUE
20 CONTINUE
P(1,1)=1.0
P(2,2)=1.0
IDEG=2
GO TO 70
30 IDEG=IDEG+]
DO 60 J=1,IDEG
P(I,J)-P(Z.J)
P(2,J)=P(3,J)
60 CONTINUE
70 CONTINUE
A= (2,0*FLOAT (IDEG) ~1.0) /FLOAT (1DEG)

-
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100

B=FLOAT (IDEG-1) /FLOAT (IDEG)
| 1= 1DEG+]

DO 100 J=1,11

IF(J.GT.1) GO TO 80
P(3,1)=-B*P(1,1)

GO TO 100

P(3,J) =A*P (2,J-1) -B*P (1,J)
CONTINUE

RETURN

END
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APPENDIX D

D.1 Subprogram PLOTXY

SUBROUTINE PLOTXY (X,Y,N,CAPT,NAMX,NAMY, | OPT)
Ckdedesodestkkdhdeddest sk kdedededodkdeddedkdkhddesehhseshkhihhkhhhkhkikiikhrk

SUBROUTINE TO PRINT AND PRINTER PLOT THE N-VECTOR Y AS A
FUNCTION OF X.

INPUT : N,X,Y - X IS ORDERED ON INPUT AND Y (I)=Y (X (1))
CAPT - LITERAL CONSTANT FOR TITLE OF PLOT IN 20A4 FORMAT
NAMX,NAMY : 4 CHARACTER L!TERAL CONSTANTS GIVING
LABELS FOR X AND Y
10PT : 1,2 (POINT OR BAR PLOT)

SUBROUTINES CALLED : FTERP,MAX,MIN

hkkhkhhhkhkkkhkhkkhihkkhihhhkhkhkhkhhkhhhkhkhkhhhkihhkhhkhkhkkkiii
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DIMENSION X (N),Y(N),T (b6),Y} (46) ,CAPT (20) ,AL (101)
DATA NOUT/6/
DATA BLANK,DOT,Z,SL,PLUS/TH ,1H., 1HX,1H|, 1H+/

MM=81
10PTY=0
IF(N.GT.19) GO TO 11
WRITE (NOUT,10) N
10 FORMAT (10X, 'SAMPLE S1ZE OF ',12,' 1S TOO SMALL TO PERFORM ',
" INTERPOLATION IN PLOTXY.')
GO T0 100
11 CONTINUE
WRITE (NOUT, 13) CAPT
13 FORMAT (1H1,33X,20AkL,/)

+

o
C CREATE T VECTOR OF EQUALLY SPACED X AND INTERPOLATE TO OBTAIN
C CORRESPONDING Y VALUES
€
DEC= (X (N) -X (1)) /45.0
T(1)=X(1)+FLOAT (1-1) *DEC
15  CONTINUE
CALL FTERP(X,Y,T,YI,N,Lb)
o
c INITIALIZE AL :
c
ON= (MM-1) /2
D0 20 J=1,MM
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20 AL (J)=DOT
WRITE (NOUT, 25) NAMX,NAMY, (AL (J) ,J=1,MH)
25 FORMAT (/,16X,AkL,6X,AL/10X,20 (1H-),2X, 101A1)
DO 30 J=1,MM
30 AL (J) =BLANK
AL (1) =SL
AL (MM) =SL

M . e

FIND MAX AND MIN :

(s Nela]

CALL MAX(YI,Lb6,YMAX, IND)
CALL MIN(Y!, L6, MIN, IND)
RY=1,2% (YMAX-YMIN)

IF(RY.LT.1.E-20) J0PTY=)

PLOT :

(e N aNel

DO kO J=1, k6
{F(1OPTY.EQ.1) GO TO 36
Ci=(Y! (J)-YMiN) /RY
Ci=2.%(C}-.5)
GO TO 37
36 C1=0.
37 K=ON%(C1+1.)+2.5
AL (K) =2
)F (1OPT.EQ.1) GO TO 35
00 39 I=1,K
39 AL(1)=Z
35 CONTINUE
WRITE (NOUT, 3 T(J),Y1 (), (AL (1), t=1,MN)
38 FORMAT (10X,F10.h,1X,F9.4,2X,101A1)
AL (K) =BLANK
IF(IOPT.EQ.1) GO TO 40
DO LY 1=2,K
41 AL (1) =BLANK
40 CONTINUE
DO 50 I=1,MM
50 AL (1) =DOT
AL (1) =PLUS
AL (MM) =PLUS
WRITE (NOUT,60) (AL (1), 1=1,MM) s
60 FORMAT (10X,20 (1H-) ,2X, 101A1)

(2N o}

YMAX=RY+YMIN

WRITE (NOUT,70) YMIN, YMAX
70 FORMAT (27X,F10.k,70X,F10.4)
100 CONT!INUE

RETURN

END
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D.2 Subprogram PLTXYZ

SUBROUTINE PLTXYZ(X,Y,Z,N,CAPT,NAMX,NAMY ,NAMZ,X|SE , XMAXD, XMSE)

ChkkkkdkhhhihhhhhhhhhhhhihhhhkhhkhhhhrRhhhRkhkhkkhkihkhkkkhhkkikiki i
c .
C  SUBROUTINE TO PRINT AND PRINTER PLOT THE N-VECTORS Y AND Z AS
C A FUNCTION OF X ON THE SAME COORDINATE SYSTEM. ]
c
C INPUT : N,X,Y,Z - X IS ORDERED ON INPUT AND Y (I)=Y(X(1)),ETC.
c CAPT - LITERAL CONSTANT FOR TITLE OF PLOT IN 20AL FORMAT
c NAMX,NAMY ,NAMZ : k& CHARACTER LITERAL CONSTANTS GIVING l
c LABELS FOR X, Y, AND Z
c X1SE,XMAXD,XMSE ~ SQUARED ERROR DIAGNOSTICS
c 1
C  SUBROUTINES CALLED : FTERP,MAX,MIN
c
(C e e Je e v Je e e e e e I 3k e ok e e 2 e e ok ok e e e e e e e e e K e de Fo ok do Kk T e ok Sk ok 3k e e ke Kk Kk ok e ok e ke ok ]
c
DIMENSION X (N),Y(N),Z(N),T(46).YI (46),Z1 (46),CAPT (20),AL (101)
DATA NOUT/6/
DATA BLANK,DOT,STAR,SL,PLUS/TH ,1H., 1H%, 1H]|, 1H+/- ]
DATA SM,SO/1HM, 1HO/
c
MM=81 ]
10PTY=0
IF(N.GT.19) GO TO 11
WRITE (NOUT,10) N
10 FORMAT (10X, 'SAMPLE SIZE OF ',12,' 1S TOO SMALL TO PERFORM ', ]
+' INTERPOLATION IN PLTXYZ.')
GO TO 100
11  CONTINUE ]
WRITE (6,13) XISE,XMAXD, XMSE
13 FORMAT (1H1,9X,85(1H-) ,/10X,'| INTEGRATED SQUARE ERROR =',E10.4,
45X, 'MAXIMUM ABSOLUTE DIFFERENCE =',E10.4,' |[',/,10X,'| MEAN ', l
+'SQUARE ERROR =',E10.4,52X,'[',/,10X,85 (1H-))
c
C CREATE T VECTOR OF EQUALLY SPACED X AND INTERPOLATE TO OBTAIN
€ CORRESPONDING Y AND Z VALUES l '
c
BEC= (X (N) -X (1)) 745.0
DO 15 (=1,46 '
T (1) =X (1) +FLOAT (1-1) #DEC
15 CONTINUE
CALL FTERP(X,Y,T,YI,N,k6)
CALL FTERP(X,Z,T,2I,N,4h6)
¢
C INITIALIZE AL :
: f
ON= (MM-1) /2
DO 20 J=1,MM ﬁ




257

20 AL (J)=DOT
WR1ITE (NOUT, 25) NAMX,NAMY,NAMZ, (AL (J),J=1,MM)
25 FORMAT (/, 16X, Ak, 4X, 2H%- AL, bX,2HO-,Ak/10X, 30 (1H-) ,2X, 101A1)
DO 30 J=1,MM
30 AL (J) =BLANK
AL {1)=SL
AL (MM) =SL

FIND MAX AND MIN :

(g N el gl

CALL MAX(YI,46,YMAX, IND)
CALL MIN(Y1,46,YMIN, IND)
CALL MAX(Z1,h6,ZMAX, IND)
CALL MIN(Z!,46,ZMIN, IND)
IF (ZMIN.LT.YMIN) YMIN=ZMIN
IF (ZMAX.GT.YMAX) YMAX=ZMAX
RY=1,2% (YMAX-YMIN)

1F (RY.LT.1.E~20) 10PTY=}

PLOT :

o000

DO 40 J=1,46
1F (10PTY.EQ.1) GO TO 36
Ci= (Y1 (J) -YMIN) /RY
Cl=2.%(Ci-.5)
C2=(Z! (J) -YMIN) /RY
C2=2.%{C2-.5)
GO TO 37
36 Ci=0.
€2=0.
37 KY=ON%(C1+1,)+2.5
KZ=ON% (C2+1,)+2.5
AL (KY) =STAR
AL (K2) =S0
IF (KY.EQ.KZ) AL (KY)=SM
WRITE (NOUT,38) T(J),Y1{J),Z1{J), (AL (1), =1, MM)
38 FORMAT (10X,F10.4,1X,F9.4,1X,F9.k,2X,101A1)
AL (KY) =BLANK
AL (KZ) =BLANK
LO CONTINUE
DO 50 =} ,MM
50 AL (1)=DOT
AL (1) =PLUS
AL (MM) =PLUS
WRITE (NOUT,60) (AL (1), 1=1,MM)
60 FORMAT (10X, 30 (1H~) ,2X, 101A1)

YMAX=RY+YMIN

WRITE (NOUT,70) YMIN, YMAX
70 FORMAT (37X,F10.4,70X,F10.4)

WRITE (NOUT,80) CAPT




80 FORMAT (/,10X,20A4,/)
100 CONTINUE

RETURN

END

D.3 Subprogram FTERP

SUBROUTINE FTERP (U,V,X,F,N,M)
CRARAKKARKAKKRRRAKKRKXKRKAKARKRRKRRKARAKRIRIARKR KSR Rk K kdkk sk

C

C SUBROUTINE TO PERFORM LINEAR INTERPOLATION ON V TO

C OBTAIN F AT THE M X VALUES

c

c INPUT: U - VECTOR OF VALUES AT WHICH V EVALUATED

c V - FUNCTION VALUES TO INTERPOLATE

c X - VALUES AT WHICH INTERPOLATED FUNCTION TO BE
c EVALUATED

c N - DIMENSION OF VECTORS U AND V

c M - DIMENSION OF VECTORS X AND F

c

C NOTE: ALL ABSCISSA VECTORS MUST BE ORDERED

c .

€C OUTPUT: F ~ INTERPOLATED FUNCTION VALUES

c
CRRRAXKKAARRARKRRRRRRARAKRAARRRARKARARARARAkRRRRLRARK KRk kkk

DIMENSION U(N),V(N),X(M),F (M)
IF(N.EQ.M) GO TO 100
=)
DO 60 I=1,M

10 1F(X(1)-u(11))20,40,50

20 IF(11.NE.1) GO TO 30
F(D=V(1)+(V(2)-v(1))2(X(1)-0(1))/(U(2)-u(1))
GO TO 60

30 F(DsVOI=)+(V1D)=v{I1=1))2X)-u(11=-1)) /U1 -U(I11-1))

GO TO 60
b0 F(1)=v(lI)
GO TO 60
50 |li=|I+]
IF(11.LT.N) GO TO 10
| =N
GO TO 30
60 CONTINUE
100 RETURN
END

R s R W M M b b b bl b b b b by beme e e




259
BD.4 Subprogram SED!AG

SUBROUTINE SED{AG(F,G,N,RANGE,X!SE,XMAXD, XMSE)
CRAKKAIKRARIAKKAKKAKIRKARKKRRK AR KKK IR KA KRS e sk A de s & Jek e dededededok s

SUBROUTINE TO COMPUTE VARIOUS SQUARED ERROR D!AGNOSTICS
BY 'RAW' NUMERICAL INTEGRATION (R{EMANN SUMS) .

c

c

c

c

c INPUT: F,G - VECTORS CONTAINING FUNCTION VALUES CORRESPONDING
c TO THE SAME ARGUMENT, (.E., F(I)=F(X(i))

c CORRESPONDS TO G(I1)=G(X(I)). F AND G MUST HAVE
c BEEN EVALUATED AT EQUALLY SPACED X VALUES.

c N - DIMENSION OF F AND G

c RANGE - RANGE OF X VALUES OVER WHICH F AND G ARE

c COMPUTED. :

c
C OUTPUT: XISE - INTEGRATED SQUARED ERROR

c XMAXD - MAXIMUM ABSOLUTE DIFFERENCE BETWEEN - AND G
c XMSE - MEAN SQUARED ERROR ASSUMING EXPECTATION TAKEN
c
c
c

WITH RESPECT TO F.

RERRRKKRKAKKEKRRREZRRKKARARERAKRRARKARRRKRARRRRRRRARRREAAKAAA KRRk AKX
DIMENSION F (N),G (N)
XMAXD=0.0 i
XI1SE=0.0
XMSE=0.0
DO 10 1=1,N
DIF=(F (1)-G(1))*(F(1)-G (1))
IF (XMAXD.LT.DIF) XMAXD=DI|F
XISE=XISE+DIF
XMSE=XMSE+D | F%F (1)

10 CONT!INUE

XMAXD=SQRT (XMAXD)
X1SE=X 1 SE#RANGE /FLOAT (N)
XMSE=XMSEARANGE /FLOAT (N) .
RETURN
END
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